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Abstract—Kidney segmentation is an important step for 
computer-aided diagnosis or treatment in urology. In this 
paper, we present an automatic method based on 
multi-atlas image registration for kidney segmentation. 
The method mainly relies on a two-step framework to 
obtain coarse-to-fine segmentation results. In the first 
step, down-sampled patient image is registered with a set 
of low-resolution atlas images. A coarse kidney 
segmentation result is generated to locate the left and 
right kidneys. In the second step, the left and right 
kidneys are cropped from original images and aligned 
with another set of high-resolution atlas images to obtain 
the final results respectively.  Segmentation results from 
14 CT angiographic (CTA) images show that our 
proposed method can segment the kidneys with a high 
accuracy. The average Dice similarity coefficient and 
surface-to-surface distance between segmentation results 
and reference standard are 0.952 and 0.913mm. 
Furthermore, the kidney segmentation in CT urography 
(CTU) and CTA images of 12 patients were performed to show 
the feasibility of our method in CTU images.   
 

I. INTRODUCTION 

Kidney segmentation in CT images is an important 
preprocessing step for computer-aided diagnosis or treatment 
in urology. Some useful information, such as renal volume, 
anatomy of kidney, etc., can be obtained after segmenting 
kidney from CT images. Several approaches have been 
presented for kidney segmentation in CT images. Spiegel [1] 
introduced an algorithm based on 3D active shape model 
(ASM). Khalifa [2] proposed a level-set method which 
combined a probabilistic shape prior and a novel stochastic 
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speed function. These two methods were applied 
semi-automatically with a manual initialization. Lin [3] 
developed an automatic method based on adaptive region 
growing to extract kindey within a region-of-interest (ROI). 
But this method mainly depended on the assumption of 
homogeneity of image intensity. It is not suitable for the 
image with large variation of image intensity within the 
region of kidney. Recently, Cuingnet [4] developed a 
coarse-to-fine approach for kidney segmentation from 
contrast and non-contrast CT images. A random forest 
classifier gave coarse kidney segmentation first. Then the 
implicit template model was applied to refine the 
segmentation result. However, 54 datasets with manually 
drawn contours were used to perform classifier training. 
Manual delineation of kidney in such a large number of 3D 
images was a time consuming task.  

In this paper, we implement an multi-atlas based method to 
obtain a coarse-to-fine segmentation of kidney in CT images. 
This method mainly relies on performing image registration 
between patient image and multiple atlas images. 
Experimental results demonstrate that our proposed 
multi-atlas based method can generate accurate segmentation 
results of kidneys in CT images.  

II. METHODOLOGY 

A. Kidney segmentation using multi-atlas image registration 

In the multi-atlas based segmentation method, the patient 
dataset is aligned with each atlas image to map the reference 
labels of the atlas images to the patient image. Then, the 
deformed reference labels from each atlas image can be fused 
together to generate final segmentation result by a specified 
fusion criterion. 
    This segmentation method mainly relies on the image 
registration which is defined as an optimization problem to 

find an optimal transformation T  between a fixed patient 
image IP(x) and a moving atlas image IA(x), 

  arg min ( ( ), ( ( )))P A
T

T C I x I T x                     (1) 

in which T(x) is transformation function which deforms IA(x) 
to spatially align with IP(x). In this paper, affine and B-spline 
non-rigid transformations are employed to ensure accurate 
matching. C is the cost function to measure the dissimilarity 
between IP(x) and deformed IA(T(x)). C is minimized 
iteratively by an optimization algorithm. Mutual information 
(MI) defined in [5] is used to measure the dissimilarity in this 
paper. The cost function is optimized by adaptive stochastic 
gradient descent method [6]. Considering the computational 
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cost in the image registration with multiple atlas images, 
some techniques are applied to improve the computation time. 
First, a randomly sampled subset of image voxels is selected 
to measure the dissimilarity cost C in each iteration. The 
number of voxels in the subset is set to 2048 in this paper. 
Secondly, a multi-resolution strategy based on Gaussian 
pyramid is used during the registration process.  
     However, if we only used the whole patient image to 
match with the atlas images as applied in the most of 
atlas-based methods [7, 8], the kidneys could not be 
segmented accurately. The main reason is that the kidneys are 
not large dominant organs in the abdominal CT images. 
Strong boundaries of body, spine and rib cage, etc. influence 
the dissimilarity measure during the registration when we 
perform registration on the whole image. In this case, the 
labels of kidneys in the atlas images cannot be mapped onto 
the region of kidney in the patient image accurately. 
Therefore, in this paper, we develop a two-step method to 
generate a coarse-to-fine kidney segmentation. The 
framework of our proposed method is displayed in Fig.1. In 
the first step, the patient CT image is down-sampled and 

matched with the low-resolution atlas images ( 1, ..., )L

i
A i N

 
to obtain the coarse segmentation of left and right kidney 
simultaneously. Two region-of-interests (ROIs) are defined 
automatically by the bounding boxes of the segmented 
regions to locate the left and right kidneys in the patient 
image. In the second step, kidneys are cropped from the 
original patient image by two ROIs acquired in the previous 
step. Then the cropped patient images are registered with the 

high-resolution atlas images ( 1, ..., )H

j
A j M . Because the 

kidney is the major structure in the cropped images, the 
kidneys in the atlas image and the patient image can be 
matched more accurately in this step. Therefore, a fine 
segmentation result is obtained finally.  
     Different registration strategies are applied in these two 
steps. In the first step, affine transformation is estimated 
firstly to align the patient image and atlas image 
approximately. B-spline non-rigid transformation follows to 
refine the spatial transformation. In the second step, only 
B-spline non-rigid registration is performed due to the 
relative small deformations between the cropped patient 
image and the atlas image.  
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Fig. 1. Framework of our proposed method. 

 

In both steps, the limitation of iteration times in the 
optimization of cost function C is fixed to 500. A cubic 
B-spline interpolator is used to estimate the image intensities 
at non-voxel positions. The B-spline grid is defined by control 
points with 16 mm interval. The deformed labels obtained from 
all atlas images are merged together by majority voting (MV) 
to generate the segmentation result. 

 

B. Building multiple atlas images 

Eight abdominal CT angiographic (CTA) images acquired by 
Siemens dual-source 64-slice CT were selected to generate 
atlas images. Contrast media was injected during the image 
acquisition to highlight the renal arteries, cortex and tumor 
regions. The size of axial image is 512×512. The average 
pixel size is 0.63 mm2 and the distance between two axial 
slices is 0.5mm. The images were interpolated linearly to 
generate isotropic volumetric images. Two-dimensional 
contours of left and right kidneys in every 15 axial slices were 
obtained by an semi-automatic method based on Snake[9]. 
All the 2D contours then were checked by a radiologist and 
corrected manually if needed. Finally, the three-dimensional 
reference label image of the kidneys were defined by 
interpolating implicit surfaces according to these 2D contours 
[10]. In Fig.2, the manually corrected 2D contours and 3D 
label image of the kidneys in one atlas image are displayed in 
3D. 
 

 
Fig. 2 Manually corrected 2D contours of kidney (in red) and 

3D labels of kidney (overlapped in yellow). 
 

 
Fig. 3 Axial slices of four atlas images are displayed. 
Low-resolution whole images and high-resolution cropped 
images are displayed in the first and the second row 
respectively. The labels of kidney in the images are 
overlapped in red. 

 
    As mentioned in Section 2.1, the proposed method in this 
paper relies on the atlas images which are composed by two 
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subsets, low-resolution whole images (AL) and 
high-resolution cropped images (AH). In this paper, N and M 
are equal to 8 respectively. The low-resolution whole images 
in AL are generated by down-sampling the original images 
and label images with a factor of 4. The axial image size is 
128×128 after down-sampling. In the second subset AH, the 
left and right kidneys are cropped from the original images by 
the ROIs defined by the labels of the kidneys. The kidneys 
with large renal tumors or renal cysts are excluded from the 
subset AH

. Finally, 5 left kidneys and 3 right kidneys are 
included in AH. Considering the orientation of left and right 
kidneys is symmetric about the sagittal plane, the cropped 
images of right kidney are flipped horizontally to make the 
kidneys in AH have the same orientation. In Fig. 3, four of 
eight atlas images including the low-resolution whole images 
and the high-resolution cropped images are demonstrated.  
 

III. EXPERIMENTAL RESULTS 

This kidney segmentation framework based on multi-atlas 
image registration is implemented in Mevislab 
(http://www.mevislab.de/). The image registration is 
performed by an open-source package named ELASTIX 
[11].  
     We applied the quantitative evaluation of our proposed 
method in 14 abdominal CTA images. These images were 
acquired by Siemens dual-source 64-slice CT with the same 
imaging protocol as used for atlas images. The pixel size of 
these CTA images is between 0.59mm2 to 0.74mm2. These 
images were interpolated linearly to generate isotropic 
volume datasets. The reference standard segmentation of 
kidneys in these images were generated first by the method 
described in Section 2.2. After that, our proposed method was 
applied to extract the regions of kidney automatically. Fig. 4 
demonstrates an example of kidney segmentation by our 
method in axial slices by comparing with the 2D reference 
contours. In Fig. 4, one can see the segmentation result has a 
high consistency with the reference contours. In order to 
evaluate the accuracy of segmentation results quantitatively, 
Dice similarity coefficient DSC  

2( )M R
DSC

M R





                                (2) 

and mean surface-to-surface distance ds between the 
segmentation result M and the reference standard  R were 
computed. Six segmentation results of kidneys with large 
renal tumors were excluded from this evaluation step because 
the tumor changed the shape of kidney significantly. It leaded 
to erroneous image segmentation results as shown in Fig.5 
due to the inaccurate image registration. Finally, in total, the 
segmentation results of 22 kidneys were used to measure the 
accuracy of our method. The average and the standard 
deviation of DSC of 22 kidney segmentation results are 0.952 
and 0.018 respectively. The mean and standard deviation of 
ds are 0.913 mm and 1.06 mm respectively. These values 
demonstrate that our proposed method has a high accuracy 
for kidney segmentation.  

     One thing worth to be mentioned is that the 2D reference 
contours near renal hilum were delineated with a relatively 
large bias due to the lack of significant boundary in this 
region. Thus, as show in Fig. 6, this is one of the main factors 
that reduces the value of DSC and enlarges the value of ds.  

 
(a) 

 
(b) 

Fig. 4. Segmentation results of a kidney by our proposed 
method. (a) coarse segmentation result obtained in 
low-resolution image. (b) final result obtained in cropped 
high-resolution image. The segmented region of kidney is 
overlapped in yellow. The 2D reference contours are 
displayed in red.  
 

 
Fig. 5. Segmentation results of a kidney with a large tumor 
(red arrow) which changed the morphology of kidney 
significantly. The segmented region of kidney is overlapped 
in yellow. A part of region of kidney was not extracted 
correctly. 
 
   Considering the dissimilarity measurement based on MI 
had been applied to many applications of image registration 
between multi-modality images [12], we tested our 
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segmentation framework with CT urography (CTU) images. 
The CTU and CTA images from 12 patients suffered from 
kidney stones were used as experimental datasets. Different 
image intensity distribution can be observed in CTA and 
CTU images. In CTU images, ureters and renal pelvis are 
highlighted, while in CTA images, arteries and renal cortex 
are enhanced by contrast media. The kidneys within these 
datasets were extracted by our proposed segmentation 
method with the same atlas images as described in Section 
2.2 . In Fig. 7, kidney segmentation results both in CTU and 
CTA images of three patients are displayed. From these 
results, one can see that the regions of kidney in CTU and 
CTA are extracted accurately although there are large image 
intensity difference in the regions of cortex, arteries and 
ureters of kidney. The segmentation results in CTA and CTU 
images were reviewed by a radiologist to evaluate their 
accuracy. Only one right kidney in the CTU image was not 
segmented correctly because of the boundary between the 
liver and the kidney was difficult to be distinguished, as 
displayed in the image of  the forth column in Fig.7.  
    The computation time for one dataset is approximate 5 
minutes on a desktop computer with CPU i7-2600 and 8G 
RAM with multi-threading technique.  
 

 
Fig. 6 Distance ds mapped on the 3D surface of segmentation 
result. Large ds can be found in the region of kidney hilum. 

IV. CONCLUSION 

In this paper, an automatic method based on multi-atlas 
image registration for kidney segmentation is presented. The 
method mainly relies on a two-step multi-atlas image 
registration to obtain coarse-to-fine segmentation results. In 
the first step, down-sampled patient image is matched with a 
set of low-resolution atlas images. A coarse segmentation 
result is obtained to locate the left and right kidneys in the 
patient image simultaneously. In the second step, the kidney 
is cropped from original images and aligned with another set 
of high-resolution atlas images separately to calculate the fine 
results.  Experimental results in 14 CTA images show that our 
proposed method can segment the kidney with a high 
accuracy. The average Dice similarity coefficient and error 
distance between segmentation results and ground truth are 
0.952 and 0.913mm. Additional experiments demonstrate 
that our segmentation framework is feasible both in CTA and 
CTU datasets. The segmentation results could be used in the 
image fusion task between CTA and CTU for invasive 

operation planning, follow-up treatment evaluation etc. in the 
future. 
 

 
Fig.7 Segmentation results in CTA (the first row) and CTU 
(the second row) images of four patients are displayed in 
column respectively. The regions of kidney is overlapped in 
red. In the forth column, the right kidney in CTU image was 
not segmented correctly because of the unclear boundary 
between the liver and the kidney. 
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