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Abstract— Rehabilitative Ultrasound Imaging or diagnostic
ultrasound is used to measure geometric properties of the lum-
bar multifidus muscle to infer muscle strength or degeneration
for back pain therapy. For this purpose, a novel semi-automatic
approach (FTS: Fisher-Tippett Segmentation) based upon the
Decoupled Active Contour is proposed to reliably and quickly
segment the lumbar multifidus muscle in diagnostic ultrasound.
To overcome speckle or hardly visible region boundaries in
ultrasound images, we first propose a novel external energy
functional to explicitly consider the underlying Fisher-Tippett
distribution of ultrasound data. We then introduce a user-
guided Hidden Markov Model trellis formation for improved
segmentation of weakly-defined regions. Extensive experiments
have shown that our approach not only improves the segmenta-
tion performance when compared to existing methods, but also
does not rely on sub-specialized knowledge for segmentation.

I. INTRODUCTION

Back pain is a common problem, with four out of five
Canadians likely to experience back pain at least once in
their lifetime [1]. One highly suspected source for back
pain is posture and its impact upon back pain has been a
popular research area [2], [3] Research has shown that the
lumbar multifidus muscle is particularly important to posture
and lends stability to the spine, helping to keep the body
upright [4] and fine tune one’s posture [5]. This thin muscle
is found deep in the spine where it surrounds the torso to
stabilize the joints at each level of the vertebrae. Dysfunction
or weakness in this muscle group is thought to be a likely
source of mechanical low back pain.

Recently, Rehabilitative Ultrasound Imaging (RUSI) or
diagnostic ultrasound has been used to measure activation
levels and muscle thickness [6], [7] of the lumbar multifidus
muscle (see Fig. 1a). This approach is safe, non-invasive,
portable and inexpensive. It allows the manual collection of
quantitative measures such as muscle depth, geometry, size
and symmetry to infer muscle strength or degeneration [8],
[9]. For the purpose of physical therapy, this information can
be useful to detect abnormalities, monitor changes in specific
muscle areas during recovery [10] and to make interventional
decisions. The accuracy of the information collected, how-
ever, strongly depends on the experience of the practitioner.
Moreover, as image-guided therapies require little movement
from the patient during acquisition, it is advantageous to
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Fig. 1: a) The lumbar multifidus muscle and b) challenges
to segmentation such as speckle, inhomogeneous texture and
weak region boundaries.

have a quick approach which allows for reliable information
extraction and fast segmentation of the region of interest [11].
In the case of ultrasound imaging, ultrasound inherently
presents a number of challenges to region segmentation as
shown in Fig. 1b including low signal-to-noise ratio (SNR),
low contrast, weak boundaries, attenuation, speckle, and
shadows [12]. Hence, for quantifying the muscular geometry,
size, and symmetry, a user-guided segmentation approach
that reduces the challenges associated with ultrasound images
and ensures fast and accurate information extraction would
be of great interest.

Many automatic and semi-automatic segmentation ap-
proaches have been proposed for segmenting regions of
interest in ultrasound images, such as methods using texture
characteristics [13], manually selected seed points located on
the region boundaries and particle filtering [14], model-based
initialization based on shape priors [15], and user-guided
region-merging using the Fisher-Tippett distribution [16].
However, the reliance of these approaches on texture retrain-
ing to adapt them to different situations [13], strong region
boundaries [14], shape priors [15], consistent textures and
relatively homogeneous regions [16] makes it challenging for
them to extract the lumbar multifidus muscles properly due
to strong shape variabilities, speckle, inhomogeneous texture,
and weak region boundaries.

Finally, interactive intelligent scissors [17] and enhanced
intelligent scissors [18] have been proposed to allow the user
to manually guide the contour for segmenting the image.
While intelligent scissors [17] enables the contour to snap
to strong neighboring structures, it can be time consuming
to have the ’live wire’ attract to the desired edge, especially
in the presence of weak or non-existent boundaries. The en-
hanced intelligent scissors [18] overcomes this limitation by
introducing a wavelet phase-based representation, however,
assumes Gaussian-distributed data and does not consider
ultrasound’s Fisher-Tippett distribution [16], [19].
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Fig. 2: Overall architecture of the proposed FTS approach

The main contribution of this work is the introduction
of a novel semi-automatic approach (FTS: Fisher-Tippett
Segmentation) based upon the Decoupled Active Contour
(DAC) [20] to reliably and quickly segment the lumbar
multifidus muscle in diagnostic ultrasound. To address the
challenges associated with ultrasound images such as speckle
or hardly visible region boundaries, a novel external energy
functional is presented which explicitly considers the un-
derlying Fisher-Tippett distribution of ultrasound data [16],
[19] and enhances the visibility of weak region boundaries.
In addition, a user-guided Hidden Markov Model (HMM)
trellis formation is proposed to improve the segmentation
of weakly-defined regions in ultrasound images by taking
advantage of the user’s guidance and expertise. The semi-
automatic approach does not rely only on a sub-specialized
knowledge for segmentation, but also reduces the user bias
when extracting the muscle for therapy.

II. PROBLEM FORMULATION
The active contour or snake, first proposed by Kass

et al [21], minimizes the energy of the snake v(s) =
(x(s),y(s)),s ∈ [0,1] where s is the normalized arc length:

Esnake =

1∫
0

α(s)v2
s (s)+β (s)v2

ss(s)︸ ︷︷ ︸
Eint

−γ(s)Eext(v(s))ds (1)

The internal and external energies, denoted as Eint and
Eext , respectively are composed of the first and second snake
derivatives, vs(s) and vss(s) and penalized by parameters
α(s), β (s) and γ(s). In Mishra et al.’s [20] decoupled active
contour (DAC) approach, Eint and Eext , are optimized in
separate steps to improve convergence. DAC defines a snake
as a series of q discrete elements:

v(s j) = vz j |z j=0 = (x j,0,y j,0), s j ∈ [0,1], j ∈ [1,q] (2)

where z j is the corresponding jth state of the jth snake
element. These states enable external energy optimization
through formulation as a Hidden Markov Model (HMM)
that is solved using dynamic programming. A trellis con-
struction is defined where at each discrete snake element,
a trellis or set of u + 1 points lying normal to the snake
are constructed as shown in Fig. 2. The series of trellises
form a set of (u + 1)q possible snakes where each snake
passes through a given sequence of states and are penalized
using state transition probabilities. A prior is then enforced
through internal energy optimization using linear Bayesian
estimation. However, DAC is an automatic active contour
approach which is not suited for the challenging nature
of segmenting lumbar multifidus muscle ultrasound data

(as shown in Fig. 1b). Hence, a user-guided approach that
accounts for the inherent characteristics of ultrasound images
is desired.

III. METHODOLOGY

The proposed semi-automatic segmentation approach,
Fisher-Tippett Segmentation (FTS) explicitly takes advantage
of user guidance and ultrasound’s Fisher-Tippett distribution
to improve and speed up the segmentation of lumbar multi-
fidus muscles in ultrasound. The overall architecture is shown
in Figure 2 and can be divided into the following three steps:
1) User-guided HMM trellis construction, 2) Computation
of the external energy functional, and 3) Contour estimation
using DAC.

A. User-guided HMM trellis construction

A set of user guided points, C = {s0,s1, · · · ,sn} are used
to derive a snake as proposed in DAC, composed of q
uniformly-distributed discrete elements, Ĉ(s). The initial
randomly dispersed user guided points, C, requires further
derivation for two reasons. Uniformly distributed elements:

1) Allow for a sufficient number of points to aptly char-
acterize the boundary of interest

2) Control the density of points, as too many points can
be computationally expensive

In the implementation of the proposed algorithm, a pe-
riodic interpolating cubic spline [22] was used to derive
the uniformly distributed snake. Then, trellises can be con-
structed for each discrete element of the user-guided snake
to prepare the HMM for external energy optimization.

B. Computation of the external energy functional

Following the user-guided trellis construction, the HMM
transition probabilities can be determined using the external
energy functional and the proximity to the user-guided snake.
In the proposed approach, the external energy functional
employs the underlying Fisher-Tippett distribution of the
ultrasound data to highlight structure based on its likelihood.
The Fisher-Tippett likelihood can be described as:

p(x|µ,β ) = 1
β

exp
(
−
(
z+ exp(−z)

))
,where z =

x−µ

β
(3)

where x is an image pixel and µ and β denote the mean and
positive scaling factors respectively. Since we are interested
in distinctive structure to guide the external energy optimiza-
tion, we define the external energy (shown in Fig. 2) as the
likelihood that x is not a realization of µ and β :
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Eext = 1− p(x|µ,β ) (4)

Extensive empirical testing shows that β = 0.5 provides
strong segmentation results. Each snake element’s state, z j, is
then associated with a state transition probability z j→ z j+1 as
proposed in [23] however with consideration of the proximity
to the user-guided snake:

p(z j,z j+1) =

{
1 if z j ∈ [− ug

2 ,
ug
2 ]

0 otherwise
(5)

where ug is a set range in proximity to the user-guided snake.
The snake is then prepared for final contour estimation.

C. Contour estimation using DAC

Once the user-guided HMM trellis construction and ex-
ternal energy functional are defined, the DAC approach
is applied for contour estimation. In the DAC approach,
dynamic programming is used to optimize the HMM. This
is followed by internal energy optimization which enforces
a prior to the snake using linear Bayesian estimation.

IV. EXPERIMENTAL RESULTS

To evaluate the proposed approach, ten users (a mix of
novices and experts) were asked to segment one of the
lumbar multifidus muscles in 10 ultrasound images. Ultra-
sound images were collected from ten patients in maximum
flexed and pelvic seat positions using a 5 MHz curvilinear
array probe in B-mode. The muscles were imaged at the
level of L4/L5 bilaterally in the transverse plane with the
transducer oriented vertically and lateral to the spinous
process. The transducer then angled slightly towards the
junction between the transverse and spinous processes until
the lumbar mutlifidus muscles were identified. This study
was approved by the University of Waterloo ethics board.
For each patient case, two segmentation attempts were exe-
cuted for consistent segmentations using the semi-automatic
segmentation approaches listed below:
FTSFH (Freehand): The proposed approach FTS is initial-
ized using a freehand drawing contour tool where the user
drags the cursor across the image to create a contour.
FTSCl (Click): A second variation to FTSFH required the
user to initialize the contour using a series of point clicks.
Enhanced intelligent scissors (EIS) [18]: The user selected
points initialized in FTSCl were used to initialize EIS.
Intelligent scissors (IS) [17]: A third-party implementation
of IS was used for testing [24].
The ground truth segmentations used for this study were
provided by a chiropractic radiologist with 9 years of profes-
sional work experience and then shown to the users prior to
segmentation and hidden during segmentation. This enabled
novice users to better visualize the general vicinity of the
muscle location. The number of selected points and the
total segmentation time for each approach were recorded.
The precision, recall and F1-measure (as applied in [23])
were then calculated based on the final segmentations. Tests
were completed using MATLAB on an Intel(R) Core(TM)

i7−4770 CPU@3.40 GHz computer with 16.0 GB of RAM.
The average results for each tester are shown in Table I and
Fig. 3.

EIS had the highest average precision across all iterations,
however had the lowest average recall and F1-measures in-
dicating that EIS tended to undersegment regions of interest.
In contrast, IS had the greatest F1-measure and recall results
yet required more patience from the user to complete the
segmentations, taking at least two times longer than the other
approaches. The freehand FTSFH approach demonstrated the
fastest segmentation time and was found by users to allow
more control in guiding the contour and offered a better
contour visualization compared to the point clicking FTSCl .

Besides the speed and visualization provided by FTSFH ,
the users found clicking to be beneficial for precisely placing
points in regions where the contour should be without having
to carefully outline the entire contour. One user found that
the increased speed of the freehand approach required more
knowledge in placing the initial contour, while continuous
feedback during segmentation provided by IS helped to better
place the initial contour. In addition, it was found that the
IS approach worked well in the presence of strong edges,
however in the absence of strong boundaries, the user needed
to include a greater number of anchoring points (as shown
in Fig. 4). This resulted in jagged segmentations that do not
aptly represent the contour of a muscle. In contrast, EIS and
FTS derived more smooth boundaries with FTSCl exhibiting
the second highest F1-measure. The results of our evaluation
show that FTS combines speed with high F1-measure, recall,
and precision results while offering two viable alternatives
to initializing the contour catering to personal preferences.

V. CONCLUSIONS

A fast and accurate semi-automatic approach called
Fisher-Tippett Segmentation (FTS) is presented for seg-
menting the lumbar multifidus muscle. FTS extends upon
the decoupled active contour [20] and utilizes user-selected
points to initialize a Hidden Markov Model for extracting
region boundaries. FTS also introduces a novel external en-
ergy functional that considers ultrasound’s underlying Fisher-
Tippett distribution to determine structurally unique regions.

Through extensive user comparisons with enhanced in-
telligent scissors (EIS) and intelligent scissors (IS), it was
found that both the freehand and point clicking variations
of FTS demonstrated fast segmentation with comparable
performance against existing approaches. Although some
users found IS’s continuous feedback useful during segmen-
tation, IS was the slowest method requiring patience and care
especially in regions with weak boundaries. In contrast, FTS
was fast to initialize and provided an accurate segmentation.
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TABLE I: Performance evaluation of the compared semi-automatic segmentation
approaches. The highest scores are marked in bold.

User F1-measure User Pointsa Total Segmentation Time [s]
FTSFH FTSCl EIS IS FTSCl EIS IS FTSFH FTSCl EIS IS

1 0.911 0.919 0.893 0.914 8 8 7 7.95 9.60 9.47 23.10
2 0.857 0.858 0.849 0.870 11 11 10 8.03 8.98 8.84 22.34
3 0.911 0.929 0.926 0.931 14 14 14 9.94 13.89 13.74 34.50
4 0.911 0.914 0.911 0.912 16 16 16 11.87 16.73 16.58 41.09
5 0.896 0.925 0.912 0.904 11 11 10 7.36 9.34 9.21 29.42
6 0.902 0.919 0.919 0.916 18 18 9 10.60 16.59 16.42 27.37
7 0.904 0.900 0.900 0.916 14 14 17 12.64 21.29 21.14 45.18
8 0.856 0.830 0.825 0.884 30 30 10 13.50 23.63 23.41 42.81
9 0.919 0.926 0.920 0.925 26 26 12 15.47 23.23 23.03 37.47

10 0.899 0.917 0.910 0.922 16 16 14 9.86 12.01 11.86 38.30
Avr 0.897 0.904 0.896 0.909 16 16 12 10.72 15.53 15.37 34.16

aFTSFH was not included as it does not require individual point selection.
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Fig. 3: Precision, recall and F1-
measure evaluation of the compared
approaches.

Source IS EIS FTSCl FTSFH GT
Fig. 4: Initial (red), final (green) and groundtruth (yellow) contours with clicked points (cyan) are shown. FTSCl and IS
demonstrated the highest F1-measure scores however IS required many anchor points when segmenting weak boundaries.

segmentation testers for helping us complete the user guided
segmentations.
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