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Abstract— An approach to jointly estimate 3D shapes and
poses of stained nuclei from confocal microscopy images, using
statistical prior information, is presented. Extracting nuclei
boundaries from our experimental images of cell migration
is challenging due to clustered nuclei and variations in their
shapes. This issue is formulated as a maximum a posteriori
estimation problem. By incorporating statistical prior models
of 3D nuclei shapes into level set functions, the active contour
evolutions applied on the images is constrained. A 3D alignment
algorithm is developed to build the training databases and
to match contours obtained from the images to them. To
address the issue of aligning the model over multiple clustered
nuclei, a watershed-like technique is used to detect and separate
clustered regions prior to active contour evolution. Our method
is tested on confocal images of endothelial cells in microfluidic
devices, compared with existing approaches.

I. INTRODUCTION

To quantify cell morphology and motion for cell migration
studies, we would first identify or segment individual cells
or nuclei. Automatic segmentation of cellular objects is a
more efficient and unbiased approach compared to manual
or semi-automatic methods. The majority of nuclei segmen-
tation techniques are applied to segment nuclei on a two-
dimensional (2D) surface [1], [2].

Here, we present a methodology to segment stained nuclei
from three-dimensional (3D) confocal images acquired from
experiments in microfluidic devices [3]. Figure 1 shows
an example of the images typically acquired. This image
comprises of nuclei in gel area and non-gel areas as well as
densely clustered nuclei at the gel boundaries (indicated by
the red ellipse). It is a challenge to accurately separate clus-
tered nuclei shapes automatically [4]. Although watershed
techniques can be used to separate clustered 3D nuclei [5],
this approach often fails to identify the whole nuclei shape
due to oversegmentation or undersegmentation.

When biologists manually segment confocal images, they
often apply some prior information about nuclei shape. It
is desirable to develop automatic analysis software which
incorporates such information. Active contours is a popular
approach to enforce shape constraints [6], [7]. Templates
are created to capture shape variability. A number of algo-
rithms apply templates directly by creating parametric point

1L.L.S.Ong and H.H. Asada are with Singapore-MIT Alliance
for Research and Technology, Singapore. sharon.ong at
smart.mit.edu

2M. Wang and J. Dauwels are with the School of Electrical and Electronic
Engineering, Nanyang Technological University, Singapore. jdauwels
at ntu.edu.sg

3H.H. Asada is also with the Department of Mechanical Engineering,
MIT, Cambridge, MA, USA. asada at mit.edu

y

x

(a) Confocal Image in XY plane

z

y

(b) Confocal Image in YZ plane

Fig. 1. 3D confocal stack of stained nuclei images (blue) at different axes,
visualized with IMARIS (Bitplane), are acquired from our experimental
device. (a) shows the cells in the gel area. The red rectangle in both figures
indicate nuclei at the 3D non-gel to gel interface where cells clump together.
The yellow ellipse in (b) indicates the area without gel. Nuclei in this region
attach to the top or bottom of the device. (Scale bar = 30µm.)

distributions or spline models to describe the segmenting
curve [8]. However, the success of these approaches is
dependant on the quality and diversity of the templates [6].
We represent the training shapes as level-set distance func-
tions [6]. We update the level-set obtained from images, with
statistical prior models in a nonparametric multivariate kernel
density estimation framework [9].

Next, we derive an alignment algorithm to match the 3D
image-driven level set with the 3D training database. The
nuclei pose (location, orientation and scale) is estimated
when we align the image. To avoid matching prior models for
a single nuclei with multiple nuclei, we use a watershed-like
technique to detect and separate connected nuclei. We then
convert the separated nuclei contours to level set functions
and update the functions separately with the prior models.

Furthermore, our methodology accounts for variations in
nuclei shape due to cell location (e.g whether the cell is
in the gel or non-gel environments) by creating multiple
shape databases. To the best of our knowledge, there is no
existing work which jointly estimates 3D nuclei poses and
shape using statistical prior models. We test our method on
confocal images of endothelial cells in microfluidic devices,
comparing our approach with existing ones. This work is also
applicable to segment different types of 3D images such as
MRI data.

II. METHOD

Figure 2 illustrates how we incorporate prior models to
jointly estimate nuclei pose p and curve shape C. We first
evolve the level set function without any shape priors to
obtain the initial curve C. We then check for multiple nuclei
using the 3D watershed-like technique described. For each
labeled nuclei, we compute the initial pose p and align
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Fig. 2. Flow diagram to estimate nuclei shape and pose with prior
models. From the example nuclei image in (A), we evolve the level set
function without prior information to obtain ψ in (B). Using a watershed-
like algorithm, we split connected nuclei and create new level set functions
for each separated nuclei. In (C), we determine the nuclei pose by aligning
the shape C (red curve) to the training shapes. The level set estimate (ψ

C̃
),

obtained by transposing ψC from (B), is updated with n shape prior models,
to obtain (D). In (E), we transpose the updated level set in(D) to its original
pose. (F) is the updated curve evolved with the image force. The new pose
is then updated. Steps (C) to (F) are iterated until convergence.

its curve C with respect to the template to obtain C̃ and
underlying level set. The aligned level set is updated with
shape prior models. We then transpose the aligned level set
back its original frame using the initial pose. We then evolve
this levelset with the image driven force and determine the
new pose.

A. Estimation of shape and pose with prior models

We segment the cell by obtaining its candidate boundary
curve C, through minimizing the energy functional:

E(C) = − log p(data|C)− log pC(C), (1)

where pC(C) is the prior density of the curve C, which
incorporates nuclei shape models.

To build a training database of curves Ci, . . . ,Cn, we
apply a similarity transform, containing pose parameters to
align the curves. We denote p as the estimated pose of C
and C̃ = T [p]C as the shape obtained by transforming every
point on the curve. We estimate the density pC(C) of any
segmenting curve as pC(C) ≈ pC̃(T [p]C).

We then update the transformed segmenting curve C̃ with
the training data through a Parzen density representation
(using Gaussian kernels) pC̃(.) which is defined in [9] as:

pC̃(C̃) =
1

n

n
∑

i=1

k(dC(C̃, C̃i), σ), (2)

where n is the number of curves, dC(C̃, C̃i) is the distance
metric between the curves C̃ and C̃i in the infinite dimen-
sional space, C, and k(x, σ) = N(x; 0, σ2). The kernel size σ
is computed from the variability of the level set functions [9].

We embed each curve C̃i by its corresponding level-set
(signed distance) function ψC̃i

. Pixels with ψ < 0 are inside
the curve, where as pixels with ψ > 0 are out of the curve.
The magnitude of the signed distance function ψC̃i

(x) is the
shortest distance from the point x to the curve C̃i. Therefore,
we define the distance between two curves, C̃ and C̃i, as
the distance between the two corresponding signed distance
functions, ψC̃ and ψC̃i

. The distance metric is approximated
by the L2 distance (Euclidean norm) [9].
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Fig. 3. Alignment of a 3D nuclei image. The left image shows the
unaligned image, where the curve C is the image boundary. We rotate and
translate the image in 3 dimensions to obtain the aligned image (middle
image). The centroid of the nuclei at each 2D slice is at the center of the
image and the orientation is zero in the xy plane. As we fix the number of
slices to 3 for our database, we perform polynomial interpolation as shown
in the right image. This image boundary is C̃.

Fig. 4. Left: Selected training shapes: stacks of binary shape models of
segmented nuclei selected interactively. These training shapes vary in the
shapes, orientation, size and number of slices. Right: Alignment results of
the training shapes. We standardized the number of image slices to three.
Each training shape is scaled and translated in the z-direction such that the
binary shape from the first and last slices are approximately half of the size
of the middle slice.

B. Alignment in 3D

We develop a methodology to calculate the set of pose
parameters {p1,p2, . . . ,pn}, in order to jointly align n

stacks of binary nuclei images. By aligning these images,
we remove any variations in shape due to pose differences.
In [6] and [9], alignment algorithms using gradient descent
were applied to 2D images. In [10], the same approach was
applied to 3D magnetic resonance images. In that work, the
number of image slices was fixed and variations in the z-
direction were minimal.

Our 3D stacks of nuclei images were acquired with a
resolution of 3µm in the z-direction and 0.6µm in the x and
y planes. In these images, shown in Figure 4, there are nuclei
with different poses (orientations, scale and coordinates) and
different number of image slices. Some nuclei within the
gel areas are more elongated in the z direction compared to
nuclei in non-gel areas.

We align n 3D nuclei images I1:n by firstly moving every
pixel (x, y, z) of image I to a new position T [p](x, y, z)
where

T [p] = R(θab, θac, θbc)





h(x+ a)
h(x+ b)
h(x+ c)



 . (3)

Here a, b and c are the translation parameters, θab, θac and
θbc are the rotation angles for the xy, xz and yz planes
respectively and h is the scale factor. In an aligned image
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Fig. 5. A: Stack of images segmented by thresholding. B: Shape-marker
based watershed algorithm to separate nuclei on each slice [4]. C: 3D
Watershed segmentation using methods in [5] and [2]. Each nuclei identified
is assigned a different color.

(e.g. the center image of Figure 3), the orientation of the
nuclei to the xy plane is zero and the centroid of the nuclei
at each stack is aligned and centered around the middle of
the image. The images were scaled to the mean nuclei size
to reduce errors due to scaling.

Our 3D nuclei images have different stacks sizes, ranging
from 2 to 5 image slices as shown in the left column of
Figure 4. We fix the number of image slices (stack size) for a
training set. We chose to use 3 slices as aligned nuclei shapes
are often unsymmetrical along the z axis. As an example,
the lower half of a nuclei is less elongated compared to its
upper half if it is on a flat surface. We interpolate the image
to obtain the nuclei shape near its top, at its middle and near
its bottom.

We obtain the polynomial coefficients P over the existing
nuclei size at each original. We select ź2 as the coordinate
of the largest nuclei size while ź1 and ź3 the coordinates
where the nuclei size is half of the maximum size at ź2. The
relationship between z coordinates of the original stack and
the new stack is







ź1
...
źn






=







z3
1

z2
1

z1 1
...

...
...

...
z3n z2n zn 1















P3

P2

P1

P0









. (4)

We interpolate in 3D to obtain the aligned nuclei image
slices at ź1,2,3, as shown in Figure 3.

Using n = 3, the right column of Figure 4 shows the
aligned and interpolated images of the corresponding images
in the left column. This approach is less computationally
expensive compared to storing a database of a large number
of slices at small intervals. It is assumed that the size of the
nuclei segmented is the largest in the middle of the stack of
2D slices and progressively becomes smaller towards to top
and bottom of the stack. If there are multiple nuclei, this size
variation assumption may not be valid and the interpolation
will be poor. This is also a cause for nuclei misalignment.

C. Alignment of clustered nuclei

To construct our database, we assume the presence of
only one underlying nucleus. If the input level set (image
(B) in Figure 2) contains multiple nuclei, we would get
inaccurate results if we evolve the level set with our prior
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Fig. 6. Shape priors of different nuclei at different sections. (A) shows the
mean shape and level set function for cells in the gel, (B), show the ones in
areas with no gel. (C) shows the shape of the cells at the gel interface. These
cells are more flatter in the xy plane and longer in the z plane. Likewise,
the cells at the posts are flatter with less variation (shown in (D)).

model. Therefore, we propose to initially segment clustered
nuclei using a watershed algorithm. We then estimate each
separated nucleus shape and pose individually using shape
priors.

We apply a shape-marker based watershed algorithm to
split each 2D slice of the image [4]. Classical watershed
algorithms use the intensity region minima and ultimate
eroded points as seed points. These approaches often result
in oversegmentation. By using shape information to define
markers, oversegmentation problems are reduced [4]. The
second row in Figure 5 shows the results of applying the
watershed algorithm separately on each 2D slice. The left
slice is the image on the bottom while the right most slice
is the one on the top. In slice 3, there are oversegmentation
errors as a single nucleus is marked by 3 labels.

To correct the mistakes from the 2D watershed algorithm,
we apply a 3D connection algorithm [5]. We create a set of
nuclei labels with the 2D watershed regions on the first slice.
In the remaining image slices, processed from bottom to
top, we compute the overlapping pixels between a watershed
region with nuclei labeled regions on the lower slice. If the
number of pixels exceed a minimum overlap, we group this
region with its matching label on the lower slice. Otherwise,
we assign a new nucleus label to that region.

If the watershed region overlaps more than one labeled
region on its lower slice, we calculate the average fitting
residual measure [2] and overlap amount. From those values,
we either (a) assign the region to the larger labeled region, (b)
group some or all of the lower overlapping regions together
or (c) split the region. The third row of Figure 5 show that
our 3D connection algorithm successfully grouped the 2D
watershed labels. The separated watershed regions in slice 3
were grouped as well. We use the grouped watershed regions
as the initial 3D nuclei candidates and refine their curves by
incorporating shape prior models.

The watershed algorithm requires O(m + nlogn) oper-
ations. For an image of dimensions X ,Y by Z, m =
XY (Z−1)+X(Y −1)Z+(X−1)Y Z and n = XY Z [11].
The computational complexity of the level set algorithm
is O(pk2) where p is the number of points in the spatial
direction and k is the size of the narrow band which in our
case, k = 5 [12]. For each image, we run the watershed
algorithm once and the level set algorithm multiple times.

5528



1 2 3

4 5 B

1 2 3

4 5 C

1 2 3

4 5 D

Fig. 7. Segmentation of two connected nuclei labeled blue and green.
C: 3D Watershed segmentation using methods in [5]. D : Improve shape
estimate with a 3D non-parametric shape prior.

A

1 2 3 4

5 6 7 8

9 10 11 B

1 2 3 4

5 6 7 8

9 10 11 C

1 2 3 4

5 6 7 8

9 10 11 D

Fig. 8. Segmentation of three connected nuclei. Each segmented nuclei
is labeled with a different color. A: Stack of original images acquired.
B: Watershed algorithm on each slice [4]. C: 3D connected components
algorithm on watershed results [5]. D : Improved shape estimate by evolving
the result with 3D non-parametric shape priors.

III. RESULTS

We demonstrate the performance of our proposed method
on real confocal microscopy images. The endothelial cells in
microfludic devices [3] are stained with Hoechst and imaged
with a 20x objective, with a resolution of 512 by 512 pixels.
The image in Figure 6 shows that nuclei in different regions
of the device are shaped differently. Therefore, we create
and match to different shape databases for different nuclei
coordinates.

We compare our methods with segmentation algorithms
in [4] (Figures 7(B) and 8(B)) and [5] (Figures 7(C)
and 8(C)). By evolving the obtained curve with shape priors,
we obtained more rounded and accurate nuclei shapes (Fig-
ures 7(D) and 8(D)). In Figure 8(D), the missing sections in
slice 5 and 6 from the two other methods were filled in and
the pixels in slice 4 do not overlap multiple nuclei. In com-
parison with work in [4], our method (shown in Figure 7(D))
overcomes oversegmentation issues and connects the nuclei
over the 3D stack.

We confirm this observation with quantitative results in
Table I. We segment the nuclei shapes manually and compare
the results with our automated ones. We then compute the
ratio of non-overlapping pixels over the total number of
pixels. Figure 9 shows the 3D reconstruction of the two
examples.

IV. CONCLUSIONS

We presented a new methodology for nuclei segmentation
based on watershed and level sets. We initially segmented
connected nuclei using watershed and refined their shape

TABLE I

% OF PIXEL ERROR COMPARED WITH MANUAL RESULTS

2 Nuclei Dataset 3 Nuclei Dataset
(Figure 7) (Figure 8)

3D Watershed [5] 24.7% 27.8%
Update with Shape Priors 14.8% 14.4%

Fig. 9. 3D reconstruction of the nuclei segmented. Left: 2 nuclei segmented
in Figure 7. Right: 3 nuclei segmented in Figure 8.

estimates with prior models. We will extend our approach
to segment 3D cell cytoskeleton and track cell shapes from
time-lapse confocal images.
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