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Abstract— Heart sound characteristics are linked to blood
pressure, and its interpretation is important for detection of
cardiovascular disease. In this study, heart sounds’ auscultation,
acquired from children patients (27 patients, 10.2±3.9 years,
35.7±20.8 kg, 132.3±25.5 cm), were automatically segmented to
extract the two main components: the first sound (S1) and
the second sound (S2). Following, a set of time, frequency,
and wavelet based features, were extracted from the S2, and
analyzed in relation to the noninvasive cuff-based measures
of blood pressure (mean blood pressure of 78±8.8 mmHg). A
multivariate regression analysis was performed for each S2
feature set to determine which features better related to the
blood pressure measurements. The best results, in the leave-
one-out evaluation, were obtained using the frequency features
set, with a MAE of 6.08 mmHg, a MAPE of 7.85%, and a ME
of 0.31 mmHg, in the estimation of the mean blood pressure.

I. INTRODUCTION

Home health monitoring is gaining greater interest for
distinct reasons, such as safety, comfort, and costs reduc-
tion. This reality demands for simpler and wearable health
monitors, that allow for a continuous record of physiological
signals, as little invasive as possible, and without discomfort
for the patient [1]. The World Health Organization estimates
that high blood pressure (BP) or hypertension (HT) is the
cause of 7.5 million deaths each year, corresponding to
12.8% of deaths. HT is also a risk factor for strokes,
heart attacks and heart failure, renal impairment, peripheral
vascular disease and retinopathy [2].

Home health monitoring systems may bring benefits from
the perspective of both patients, physicians, and health care
providers. From the patient’s side, these systems allow a
myriad of opportunities, from remotely monitoring chronic
patients, to promoting wellness and self-care to others,
improving their outcomes. From the physicians and health
care providers’ side these technologies help to cut direct
health care costs by reducing the number of hospitalizations,
also reducing the risks of hospital-acquired infections, and
hospitalization overcrowding. Moreover, these technologies
may help to extend the health care to patients who live in
places far from a medical center.
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Usually BP is measured by cuff-based noninvasive meth-
ods, or through an arterial catheter placed in the radial
artery with a pressure transducer (invasive). These methods
are uncomfortable and inadequate for long term monitoring,
and several techniques to substitute the current standard are
being explored for the continuous noninvasive BP estima-
tion, with as little apparatus as possible, applying different
physiological properties of the cardiovascular system, such
as the Pulse Transit Time (PTT) [1], vascular transit time
(VTT) [3], and the heart sound [4], [5], [6]. Since increased
BP leads to an increase in amplitude and frequency of the
second heart sound [7], we propose to explore heart sound
as a noninvasive BP correlate.

A heart cycle period (S11) is depicted in four main
components [8]: the first sound (S1), the systolic period
(S12), the second sound (S2), and the diastolic period (S21),
as illustrated in the phonocardiogram (PCG) in Figure 1.
The correct identification of heart sounds allows retrieval of
information from each component, including the detection of
murmurs and its characteristics.

Fig. 1: Phonocardiogram (PCG) representation, with corre-
spondent heart sound components: first sound (S1), second
sound (S2), systolic (S12), diastolic (S21) and heart cycle
(S11) periods.

The S2 is described as being composed by two compo-
nents: the first related to the closure of the aortic valve (A2)
and systemic BP, and a second component related to the
closure of the pulmonary valve (P2) and pulmonary BP [8],
[6]. Previous studies have demonstrated a relation between
S2 and the arterial pressure both on the systemic [4] and
pulmonary circulations [6], [5].

In this study, time-frequency features extracted from the
S2 were analyzed in relation to the noninvasive peripheral
BP measures.

II. MATERIAL AND METHODS
Data collected in the Real Hospital Português (RHP) in

Recife, Brasil, with a Littmann R© 3200 electronic stethoscope
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TABLE I: Sample mean, standard-deviation, and range values of the demographic data, and blood pressure measurements.

Age (years) Weight (kg) Height (cm) SBP (mmHg) DBP (mmHg) MBP (mmHg)
Mean 10.2 35.7 132.3 104.6 64.7 78.0

Standard-Deviation 3.9 20.8 25.5 12.9 8.4 8.8
Range (min-max) 3-18 8-97 69-183 90-145 50-90 63.3-103.3

(4 kHz), and the DigiScope Collector (Figure 2). Data were
anonymized and shipped to Portugal with the approval of the
RHP and University of Porto Ethics Commitees. Noninvasive
systemic BP was measured in the arm and sitting position.
Collected demographic data include gender, age, weight and
height. Data analysis performed in MATLAB R2013b.

Fig. 2: DigiScope Collector system prototype front view.

A. Data Set

Data collected from 27 patients, 10 female. Table I
presents the sample demographic data and BP values.

To analyze the relation between S2 characteristics and
the individual BP, Mean Blood Pressure (MBP) was ap-
proximated using systolic and diastolic BP (SBP, DBP)
measurements, according to Equation 1 [9].

MBP ≈ 2DBP + SBP

3
(1)

B. Heart Sound Segmentation

Heart sound segmentation was performed on PCGs col-
lected over the pulmonary auscultation spot, as described
in [10]. Figure 3 presents an example of the segmentation
results.

Fig. 3: Segmentation of a phonocardiogram with correspond-
ing detected S1 (circle) and S2 (square) marks.

Total auscultation time in the pulmonary spot was of
307.5 s (432 detected S2s).

Fig. 4: On top, example of the temporal positive and negative
contour envelopes; on bottom, representation of a S2 and
corresponding detected delimiters.

C. Heart Sound Features Extraction

Following heart sound segmentation, detected S2s were
analyzed for each patient, and time and frequency based
features extracted as described below.

Temporal contour envelopes were extracted from each S2,
based on the local maximums and minimums of the signal,
and interpolated using a cubic Hermitian spline (Figure 4).
For each positive envelope, the two largest peaks are de-
tected: the first corresponding to the A2 component, and
the second to an estimated P2 (difficult S2 segmentation
validation). The lag between peaks was also extracted.

Similarly, the energy of the signal was obtained (Equa-
tion 2), and the peaks of the energy envelope extracted as
before (A2, P2, and lag).

E =
1

win

win∑
i=1

PCG(i)2 (2)

where win is the window length.
To extract information regarding solely activity during an

S2, an algorithm based on the difference between positive
and negative contour envelopes was developed to extract the
signal periods of sound and silence (10% threshold). The
developed algorithm brings additional information regarding
S2 duration, which was also stored. Figure 4 presents an
example of a S2 delimitation. For each delimited S2 the zero-
crossing rate of the segment was obtained.

Shannon entropy was also extracted from each S2 (Equa-
tion 3) [11].

Entropy =
1

n

n∑
i=1

pilog(pi) (3)
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for a set of events with PDF {pi, i = 1, ..., n}.
Following time-based analysis, frequency analysis of each

S2 segment was performed extracting spectral roll-off (85%),
centroid, and peak frequency [7]. Short-time spectral analysis
was performed on the S2, subdivided into smaller windows,
and the spectrum estimated (Hamming window). The spectral
features previously referred were then extracted from the
maximum energy window.

Finally, the order 6 Daubechies wavelet transform was
obtained, and energy distribution over the approximation
and details at different levels (level 4) was extracted and
incorporated in the features matrix [10].

D. Blood Pressure and Second Heart Sound Analysis

The features described in the previous section were divided
into time, frequency, and wavelet based features. Features
were extracted from each heart sound, for each patient,
and median values of all detected S2s were assigned to
each patient. Following, the median S2 features set for each
patient, were used in a multivariate linear regression model
of the MBP (Equation 4), and adjusted for the total data using
the different features’ sets (least square error minimization).

M̂BP i = a0 + a1x1(i) + ...+ alxl(i) + e(i) (4)

where ai is the estimated weight of attribute xi on the
estimation M̂BP i.

For each features’ set a stepwise feature selection was
performed, and a linear multivariate model adjusted and
evaluated using a leave-one-out approach (reduced number
of data points available). Results are presented for the global
model using total data, and for the leave-one-out evaluation.

E. Evaluation Criteria

According to the British Hypertension Society, require-
ments for Grade A BP monitors are that measurements within
a 5 mmHg range includes at least 60% of data, measurements
within 10 mmHg comply 85% of data, and measurements
within 15 mmHg range include 95% of the data [12], [13].
Cumulative percentages were calculated for each.

Mean absolute error (MAE, Equation 5), mean absolute
percentage error (MAPE, Equation 6), mean error (ME,
Equation 7), and error standard-deviation were calculated.
According to the US Association for the Advancement of
Medical Instrumentation standard, a BP device must display
MAE inferior to 5 mmHg, and an error standard-deviation
inferior to 8 mmHg [1].

MAE =
1

m

m∑
i=1

∣∣∣MBPi − M̂BP i

∣∣∣ (5)

MAPE(%) =
1

m

m∑
i=1

∣∣∣MBPi − M̂BP i

∣∣∣
MBPi

(6)

ME =
1

m

m∑
i=1

MBPi − M̂BP i (7)

(a) (b)

(c) (d)

Fig. 5: Estimated Mean Blood Pressure (MBP): (a,c) mea-
sured MBP versus estimated; (b,d) Bland-Altman plot. (a,b)
results for the linear model using all frequency features, and
total data; (c,d) results for the leave-one-out adjusted model
of frequency features.

where m is the number of patients.
For each set, the linear correlation coefficient was ob-

tained, and to assess agreement between the BP measured by
the conventional method, and the estimated, a Bland-Altman
analysis was performed [14]. The mean of conventional
method and estimated MBPs, and respective error and two
standard-deviation boundaries are shown.

III. RESULTS AND DISCUSSION

Table II presents the results obtained for each model
regarding correlation, and estimation errors, and Figure 5
presents the Bland-Altman plots for the error analysis of the
frequency features set model, which exhibited lower error.

The best results in the cross-validation were obtained for
the model using the S2 spectral features, which relation has
also been reported in the literature [7], [4], followed by the
wavelet subset, and time-based features. Figure 5, presenting
the Bland-Altman analysis, shows that estimations have a
wide variation, with no apparent relation between the mean
MBP and the error. In [5] the authors propose a series of S2
features and several machine learning techniques, including
a multivariate linear regression, to estimate the pulmonary
arterial pressure. The best results obtained in this study were
with support vector machines with radial basis function,
and with a multilayer perceptron neural network (standard
estimate of error of 5.6 and 8.3 mmHg, respectively). Their
results were an improve to the previously published results,
especially since the validation set was independent from the
training set. Regarding systemic BP, in [4], the normalized
spectrum of S2 was used to estimate SBP, and demonstrated
a good correlation between the intra-arterial BP measure-
ments and the estimated pressure via the acoustic method
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TABLE II: Model results of estimated blood pressure, using S2 characteristics, in relation to measured blood pressure:
correlation coefficient (ρ), mean absolute error (MAE), mean absolute percentage error (MAPE), mean error (ME), error
standard-deviation (SD), and percentage estimates within error bands of 5, 10 and 15 mmHg.

% Estimates Within Error Band
Features ρ MAE (<5) MAPE (%) ME Error SD (<8) 5 mmHg (>60%) 10 mmHg (>85%) 15 mmHg (>95%)

Total Data Linear Model
Total 0.82 4.11 5.28 0.00 5.03 62.96 100.00 100.00
Time 0.40 5.91 7.48 0.00 8.05 48.15 85.19 92.59

Frequency 0.60 5.03 6.54 0.00 7.03 66.67 85.19 96.30
Wavelet 0.36 5.98 7.62 0.00 8.20 55.56 81.48 96.30

Leave-One-Out Adjusted Linear Model
Total 0.22 7.48 9.69 -0.12 9.98 44.44 70.37 88.89
Time -0.37 9.18 11.85 -0.88 12.66 37.04 70.37 77.78

Frequency 0.39 6.08 7.85 0.31 8.29 48.15 81.48 88.89
Wavelet 0.23 6.22 7.92 -0.22 8.81 48.15 81.48 92.59

proposed, reporting a mean relative error of 6%, nonetheless
this methodology was for estimations following individual
calibration.

The preliminary results presented in this study are similar
to the results presented in the literature. Limitations in our
study are the reduced number of patients, use of a children
population (not homogenous), the fact that only one measure
of BP was obtained for each patient not allowing for the
individual calibration and repeatability analysis, and the
limited range of BPs evaluated. Also, the linear multivariate
model may not be adequate, since these features may exhibit
non-linear relations to the BP [5]. A MAE of 6.08 mmHg
was observed in the leave-one-out cross-validation of the
frequency features set, which although is below the required
standards for BP monitors, present as encouraging results
for this exploratory study. We must highlight that the heart
sound characteristics may be linked to normal physiological
changes during growth, that should be analyzed in detail.

IV. CONCLUSIONS

The relation between systemic BP and the characteristics
of the S2 were analyzed. Noninvasive estimation of BP
through heart sound analysis, would allow for a more safe
noninvasive monitoring of BP in high risk patients, without
the discomfort of a pressure cuff, or an invasive arterial
catheter, ideal for a long-term monitoring [4], [5], [6].

Children PCGs were segmented into S1 and S2 compo-
nents, and individual S2s analyzed, demonstrating that S2
characteristics are related to the measured MBP. The spectral
features extracted from the S2s presented the best results,
comparable to those presented in the literature; data from
different patients was used, and the population in study
is not homogeneous (age and physiological modifications);
probably it will be necessary to provide individual calibration
for more reliable measurements within the same patient, in
accordance with the current clinical practice [4].

This is an exploratory study, with some limitations, namely
the small range of BP variations and an unique BP measure-
ment for each patient. Other factors may induce bias such
as S2 detection errors. In future studies, heart sounds and
invasive systemic BP wave will be analyzed in conjunction,
during abrupt changes of the BP in real clinical situations, to

better understand the individual dynamic relations between
BP, heart sounds, and patients’ biotype.
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