
Abstract— In this contribution we introduce the Parallel 
Factor 2 (PARAFAC2) analysis as a novel method for the 
simultaneous detection and classification of neural action 
potentials. In order to measure these action potentials (spike 
signals), stem cell derived neuronal cells are cultivated on the 
surface of a Micro Electrode Array (MEA). Here, the neuronal 
cells produce ion currents, which can be measured as 
extracellular electric potentials. Whenever a cell or a group of 
cells produces ion currents, either spontaneously or evoked by 
a stimulus, a spike signal can be measured by the electrodes of 
the MEA. Stimulated cells produce spikes and groups of spikes 
(bursts) which propagate in space over the MEA. In the 
recorded data, different source types (e.g., cells which respond 
directly to external stimuli and cells which are triggered by 
other neural cells) are characterized by different spike shapes. 
The proposed PARAFAC2 method is able to separate these 
spike shapes (sources) in time, frequency and space (channels) 
enabling an improved performance in noisy scenarios. 
Furthermore, PARAFAC2 allows for a causality analysis on 
the measured spike signals (i.e. the identification of different 
signal paths). Thereby, the PARAFAC2 decomposition is able 
to exploit the multi-dimensional structure of the MEA data. 

I. INTRODUCTION

Neuronal cells are the basic functional unit of the human 
brain. They are highly specialized cells and able to build 
intercellular connections forming neuronal networks. They 
communicate by the transmission of various types of signals. 
The communication between two or more neuronal cells is 
performed by neuronal excitation messengers or 
neurotransmitters (e.g. neuropeptides, endorphins). The 
receiving cell converts the messenger-based excitation into 
an ion signal which is forwarded to its dendrites and axon. 

When attempting to understand complex neuronal 
networks, the use of MEAs provides a fast, nonintrusive, 
extracellular recording method capable of simultaneously 
measuring the activity over a certain area covering the 
network. In the evaluation of these recordings, the 
identification of spontaneous and stimulated activity is 
necessary. Active cells produce spikes and group of spikes 
which can be analyzed by e.g., statistical methods. 

Given a neuron is spiking randomly or induced by a 
stimulus, a current is evoked. By means of ion transfer across 
the cell membrane a potential difference between the intra- 
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and extra-cellular spaces is generated. This potential 
difference can be measured using the MEA. Essentially, 
spikes are measured at every electrode of the MEA. In order 
to identify which neuronal cell at which electrode is the 
source of a specific spike, it is necessary to classify all 
detected spike waveforms. This information allows for a time 
based sorting of the spikes in order to obtain knowledge 
about the type of neuron and its location. 

In this contribution we use PARAFAC2 to detect spikes 
of noisy signals and to sort the spikes. Meaning the spike 
detection and spike sorting is performed within one step. The 
method performs successfully using simulated as well as real 
measured data. 

II. METHODS

The starting point to analyze communication channels 
between active, living cells is to identify and separate 
different kinds of spiking neurons. Different time series 
characteristics are detectable caused through different forms 
and sizes of the cells. In case an intercellular connection is 
established the information from an initiating cell is 
conducted to the next connected cell or cells. The activation 
or action potential can be measured along a path on a MEA. 
Polarization, depolarization, and refractory period of the 
neural cell [1] causes a specific delay across the channels. 
The action potential is moving across the electrodes of the 
MEA.  Multiple kinds of connections exist between cells on a 
MEA. It is likely having two or more connection paths within 
one cell structure. The PARAFAC2 method is able to 
separate these paths. The influence of the noise to the correct 
detection of the potentials is also analyzed.  

PARAFAC2 is a multi-dimensional signal 
decomposition, the input dimensions are time, frequency and 
channel. The first preprocessing step was the calculation of 
the Reduced Interference Distribution (RID), a special kind 
of the Wigner Ville Distribution (WVD) [2] with a 
corresponding kernel to minimize interferences between auto 
terms. The advantage of this time frequency distribution is 
the high time and high frequency resolution. The RID is 
calculated for each channel with a moving signal source. 
Through PARAFAC2 decomposition it is possible to 
determine signatures which change in only one dimension. 
The variable signature of a moving source is the time. 
Another important parameter of PARAFAC2 is the order 
which determines the number of different sources. 

A. PARAFAC2 method 
For the analysis of 3-dimensional data R. A. Harshman 

introduced the Parallel Factor 2 (PARAFAC2) 
decomposition model in [3]. Thereby, the 3-way data is 
represented by a set of matrices kX  of size TF NN ,
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where FN  is the number of frequency bins and TN is the 
number of time samples. The channel index k varies in the 
range of C,,1 N with CN  denoting the total number of 
channels provided by the MEA. Please notice, that the 
matrices kX are generated by performing a Time-
Frequency-Analysis (TFA) on every channel of the MEA 
recordings. The subsequent PARAFAC2 analysis 
decomposes the resulting set of matrices according to [3] 

T
kkk TDAX  (1) 

where RaaA ,,1
RNT  and 

Rkkk ,1, ,, ttT RNT  are the matrices of frequency 
signatures and time signatures, respectively. Here, R is the 
number of components extracted by the PARAFAC2 
decomposition. Furthermore, the diagonal matrices 

kD
RR  are constructed from the rows of the matrix of 

channel signatures RccC ,,1
RNC . As a result, 

every PARAFAC2 component is characterized by a constant 
frequency signature ra , a channel signature rc  and multiple 

time signatures rk ,t with Rr ,,1 . In contrast to other 
3-dimensional decomposition models, such as the Parallel 
Factor (PARAFAC) model [4], PARAFAC2 according to (1) 
supports an additional variation of the time signatures 

rk ,t over the different channels. This property is crucial for 
the analysis of spike shapes which may appear temporally 
shifted in the different channels measured at the MEA [5]. In 
order to obtain a unique decomposition model according to 
(1), the PARAFAC2 decomposition includes the Harshman 
constraint [5]  

HTT kk
T  (2) 

which forces the sample covariance matrix H of the time 
signatures rk ,t to be independent of the channel index k. For 
the computation of the PARAFAC2 decomposition according 
to (1) and (2) we use the alternating least-squares based direct 
fitting algorithm presented in [6]. 

B. Simulated signals 
The simulated signal is created using data of two different 

spike waveforms with a length of 4 ms each and a whole time 
series of 100 ms. These waveforms are extracted from 
random spiking data of earlier studies [7]. The used 
waveforms are the mean of the two most representative time 
series. Both spikes are shifted in time (2 ms) over the 
channels in opposite directions to fulfill the condition of the 
Harshman constraint (cf. eq. (2)). The whole data set consists 
of 47 channels. Figure 1 shows the two types of spikes (top) 
and how they are shifted across the channels (bottom). 

To evaluate the robustness of PARAFAC2 white noise is 
added. The chosen signal to noise ratio is -15 and 30 dB 
(Figure 2). The added noise is independent between the 
channels. 

C. Random spiking data 
To evaluate PARAFAC2 using real signals we use a 

multichannel random spiking dataset of stem cells derived 
neuronal activity. For the analysis a time window of 200 ms 
is applied. For preprocessing all 60 channels are transformed 
into the time frequency domain utilizing the RID. 

III. RESULTS

A.  Simulated signals with two sources 
PARAFAC2 is able to decompose the signal of all 

channels in time, frequency, and channel signature 
successfully. The order is determined by the given number of 
spikes of the simulated signal. Figure 3 shows the two 
components of the time-frequency-signature. The two 
different spikes can be clearly distinguished (Figure 3 and 
Figure 4, white). The input signal has a SNR of -5 dB. 
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Figure 2. Two channels of the simulated data set, white noise added  
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Figure 1. Simulated data set, 47 channels, and 2 different spike 
waveforms; shifted beyond the channels in opposite directions 

5487



B.  Spike detection rate 
The simulated signal with two sources (spikes) is also 

generated using noise. The robustness of PARAFAC2 spike 
detection and sorting is evaluated at various signal to noise 
ratios (SNR). Figure 5 shows the rate in percent of correct 
detected spikes. Up to an SNR of -5 dB 100 % of the spikes 
are detected and sorted correctly. Between -10 and -5 dB 
approx. 75 % of all spikes could be detected correctly 
independent of their class. 

B.  Random spiking activity 
To analyze real spiking data PARAFAC2, data containing 

two classes of spikes are analyzed. Figure 6 illustrates one 
channel of a 60 channel dataset. There are three spikes of 
component one and one spike of component two. 
PARAFAC2 does not distinguish between spikes of different 
polarization caused by their same frequency signature. 

IV. DISCUSSION

Two different spike waveforms in opposite directions are 
successfully separated by PARAFAC2. To successfully apply 
PARAFAC2 several signal characteristics have to be met: 
spike classes differ in the time-frequency domain, and the 
shift is not equal between them across the channels. The 
Harshman constraint restricts the correlation matrix of the 
factor matrices kk TT T  (time signatures T of channel k) to 
be invariant over all channels. 

Between a SNR of -10 dB and -5 dB more than 75 % of 
all spikes are successfully detected. In this range 
PARAFAC2 is not able to distinguish between the spikes. 
Since they have a high similarity caused by the noise. At this 
noise level the Harshman constraint is not fulfilled. Due to 
low differences in signatures between the channels. 

PARAFAC2 detected and sorted the spikes of a 
multichannel MEA recording of self-spiking cells. One 
channel and its four nearest neighbors was selected to 
calculate the time and frequency signature. The different 
spike forms were exactly separated over all channels and a 
causality analysis by using template matching can be 
performed. Figure 7 shows the time frequency signature plot 
of five neighboring channels. Component 1 describes all 
spike with high frequency parts, component 2 describes spike 
with low frequency parts. In component 2 a moving of the 
signal is visible. 

PARAFAC2 has only separated spikes which are varying 
in time and not in frequency over the channels. 
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Figure 6. Spike sorting and detection of a real time series with spiking 
neurons of channel 2 (left) and channel 4 (right). In the original signal (top) 
two types of spikes (class 1: middle; class 2 bottom) were found. They are 

detected and separated. 
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Figure 3. Time-frequency signature of the first 5 of 47 channels is 
displayed at a SNR of -5 dB. Red color implicates the position of the spike, 

(a) spike class 1, (b) spike class 2. 
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Figure 7. Spike sorting and detection of a real time series separated into 
two components. Component 1 (a) from channel 1 to 5 with high frequency 

spikes, Component 2 (b) from channel 1 to 5 with low frequency spikes. 
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