
 

 

 

  

Abstract— In neonatal research, physiological signals are 
often degraded by an artifact generated by movement of the 
infant. Portions of these movement embedded signals are 
commonly excluded in the analysis of the relevant physiological 
signal. However, movement may be a significant marker of 
physiological development of the infant. Here we present 
results from a wavelet-based algorithm that quantifies neonatal 
movement, using recordings from the pulse plethysmograph. 
We suggest that movement-induced artifactual signal can yield 
important physiological information regarding neonatal 
physiology. 

I. INTRODUCTION 

Apnea of prematurity is a common developmental                                      
disorder in preterm infants that is implicated in long-term 
neuro-developmental deficits. Preventative clinical 
interventions would benefit from quantitative indices that 
predict risk of apnea, hypoxia and bradycardia [1]. As with 
many nonlinear dynamical systems, information indicating 
the underlying parameters or state of a system can be hidden 
within the observed signals. In physiological systems, 
disentangling these underlying parameters can be 
complicated by the interaction of multiple subsystems.  

 There is currently no routine method for monitoring gross 
body movements in hospitalized critically ill infants. Here 
we describe an algorithm for quantifying somatic movement. 
The idea that gross body movements might be a precursor to 
apnea has been described previously [1-5]. A number of 
physiological perturbations result from spontaneous 
movement, including increased oxygen consumption due to 
metabolic demands, movement-induced  hyperventilation 
and hypocapnea, and disruption of quiet sleep. These 
perturbations can lead to a destabilizing effect on ventilatory 
control and hence the occurrence of movement might serve 
as an important physiological marker that anticipates apnea 
episodes. 
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We propose a model using the wavelet transform [6] to 
detect the time varying movement signal from a routinely 
recorded signal, the pulse plethysmograph (Pleth). We 
studied the distribution of the movement signal and its 
characteristics. 

II. METHODS 

A. Experimental Data 
A prospective study was performed on 10 preterm infants 

(gestational age <35 wks) at the Neonatal Intensive Care Unit 
(NICU), University of Massachusetts Memorial Healthcare. 
Infants with congenital malformation, chromosomal 
disorders, congenital or perinatal infection of the central 
nervous system, intraventricular hemorrhage (>grade II) and 
hypoxic-ischemic encephalopathy were excluded. Infants 
were studied while spontaneously breathing room air or 
receiving supplemental oxygen through nasal cannulae at a 
fixed flow rate. The protocol was approved by the University 
of Massachusetts Medical School Institutional Review Board 
for Human Subjects. 

Pulse oximeter plethysmographic waveforms for 10 
subjects were recorded and displayed using a bedside monitor 
(Intellivue MP70, Philips Medical Systems) and streamed to 
a personal computer using data acquisition software 
(TrendfaceSolo, Ixellence GmbH in 9 subjects; VueLogger, 
Wyss Institute, Boston in 1 subject) at a sampling rate of 125 
Hz. One-hr data segments for each of the 10 infants were 
selected from recording periods between feeding periods. 

B. Wavelet Based Model for the Detection of Movement 
Signal from Plethysmograph data 
The pulse oximeter is a device that measures the change 

in the volume of arterial blood with each heart beat. This 
signal is detected from a sensor attached to the hand or foot 
of the infant. 

The sensor is also highly sensitive to movement, revealed 
as rapid fluctuations in plethysmograph signal with 
waveforms that are visibly distinct from the pulse-induced 
waveform. As a result of these fluctuations, the signal 
becomes highly non-stationary with rapid changes in 
amplitude and time scale.  To capture only the fluctuations 
caused by the movement from the Pleth signal, we considered 
a framework with wavelet transform and developed a 
procedure to capture the movement signal. 

Given a discrete Pleth signal 𝑥(𝑛∆𝑡), we obtain a wavelet 
transform of the given discrete signal by the convolution of 
the data with the scaled and translated version of a mother 
wavelet 𝜓𝑜(𝛾). Thus the wavelet transform is defined as  
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𝑊𝑛(𝑠) = ∑ 𝑥(𝑛∆𝑡)𝑁−1
𝑛′=0 𝜓𝑜∗ �

�𝑛′−𝑛�∆𝑡
𝑠

�       (1)  

where N is the number of data points. As described 
previously [6], convolution is done N times using a wavelet 
function that has been normalized to have unit energy. We 
used a dyadic representation of scales as 

𝑆𝑗 = 𝑠𝑜2𝑗𝛿𝑗   𝑗 = 1,2, …… . 𝐽            (2) 

with 𝑠𝑜 = 2∆𝑡, 𝛿𝑗 = 1/32 and 𝐽 = 256 

Of the different choice of wavelets available, we 
considered Paul wavelet described as 

𝜓𝑜(𝛾) =
2𝑚𝑖𝑚𝑚!
�𝜋(2𝑚)!

(1 − 𝑖𝛾)−(𝑚+1)          (3) 

where 𝑖 = √−1  and order 𝑚 = 4. This wavelet captured the 
onset of movement accurately compared to other wavelet 
functions.  

We determined the wavelet power spectrum (scalogram) 
and the maximum value in the scalogram at each instant of 
time in the period greater than 1.5s.  The instantaneous 
variation of this signal is defined as the movement signal A(t) 
which represents the intensity of movement. 

We also determined the duration of each movement burst 
from the movement signal by setting a threshold of 20 to 
yield a binary signal as a marker of movement.  

𝐷(𝑡) = �1 𝐴(𝑡) > 20
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

�                (4) 

All inter-movement burst durations less than 5s was set to 
1 to get a revised marker for the calculation of movement 
duration.  

III. RESULTS 

A.  Detection of Movement Signal from Plethysmograph 

Figure 1.  (a) Plethysmograph signal (Pleth). (b) Time-frequency 
representation of the Pleth signal and (c) Predominant power in the range of 

1.5-5Hz extracted from (b) 

Fig. 1 represents the time-frequency representation of the 
Pleth signal and the estimated movement signal. As it can be 
seen, the movement of the infant is captured in the Pleth 
signal. 

 

Figure 2.  (a) Estimated movement signal A(t) derived from the Pleth 
signal. (b) Marker signal D(t) obtained based on setting an arbitrary 

threshold on A(t) (c) Revised marker signal 

B. Characterization of Movement Signal 
To understand the characteristics of the movement signal, 

we plotted the distribution of the signal. We found that the 
distribution follows a long tail, suggesting that the movement 
signal is not random. Such long tail distributions have also 
been found as a feature of breathing patterns, i.e., the 
distribution of interbreath intervals[7,8]. 

Figure 3.  Distribution of the estimated movement signal amplitude, A(t) 
along with the best function fit using lognormal function 

We found that the lognormal distribution fits the 
distribution well in terms of goodness of fit compared to 
other distributions (Fig. 3). We also estimated the duration of 
the movement signal estimated from Fig. 2c as the time 
interval the movement signal remains continuously above 
zero. The distribution of movement durations also showed a 
long tail distribution with lognormal function as the best fit 
(Fig. 4).  We considered one hour recordings from 10 infants 
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 and estimated the parameters of the lognormal distribution as 
shown in Table I.  

Figure 4.  Distribution of the estimated movement signal duration, D(t) 
along with the best function fit using lognormal function 

TABLE I.  ESTIMATED MEAN (𝜇𝐴) AND STANDARD DEVIATION 
(𝜎𝐴)  OF THE MOVEMENT SIGNAL AND ESTIMATED MEAN (𝜇𝐷) AND 
STANDARD DEVIATION (𝜎𝐷) OF THE MOVEMENT DURATION ALONG 

WITH DAY OF LIFE OF 10 INFANTS 

Subject # Day of life 
(days) µA σA µD σD 

1 25 2.57 1.96 2.32 1.07 
2 5 2.25 1.23 1.39 1.35 
3 7 2.39 1.44 1.88 1.17 
4 8 2.09 1.47 1.56 1.38 
5 6 1.79 1.69 1.86 1.31 
6 8 2.11 1.70 1.71 1.21 
7 3 3.14 1.40 2.10 1.47 
8 6 0.74 1.64 1.31 1.35 
9 14 0.64 2.05 1.15 1.14 

10 15 2.24 1.59 1.71 1.17 
 

C. Relationship of Movement Characteristics with Infant 
Physiology 
We calculated the day of life as the difference of post 

conception age and gestational age. We studied whether the 
characteristics of the distribution has any relationship with 
day of life.  We found a strong correlation of day of life with 
the estimated standard deviation of the fitted lognormal 
distribution of the movement signal (Fig. 5).  

We also found a strong correlation of day of life with the 
estimated standard deviation of the movement duration (Fig. 
6). However we did not find any correlation between the 
estimated mean of either the signal or the duration and the 
day of life. The exact significance of such a relationship is 
not known, however it may reflect the maturation of the 
infant.  

 

 

 

 

Figure 5.  Correlation of day of life with the estimated standard deviation 
of the fitted lognormal distribution of the movement signal (n=10) 

Figure 6.  Correlation of day of life with the estimated standard deviation 
of the fitted lognormal distribution of the movement burst duration (n=10) 

IV. CONCLUSION 
In hospitalized critically ill infants, there is no routine 

method for monitoring gross body movement, which appears 
to be a physiologically important index for infant health and 
a precursor for life-threatening events [3]. Here we have 
shown, using a wavelet based algorithm, that movement can 
be detected from the pulse plethysmograph signal. The 
distribution of the movement signal as well as duration of 
movement bursts follows a lognormal function. We found 
that the estimated standard deviation of the lognormal 
function correlates with the infant’s day of life. This 
suggests that analysis of movement can serve as an 
important physiological marker that may be relevant to 
growth and development. 
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