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Abstract— This work evaluates a possibility of creating a
high-frequency, SSVEP-based brain computer interface using
a low cost EEG recording hardware - an Emotiv EEG Neuro-
headset. Both above aspects are crucial to enable deploying the
BCI technology in the consumer market. High frequencies can
be used to create a non-tiring and more pleasant interface.
Commercial EEG systems, as the Emotiv EEG, although
demonstrating large underperformance, are much more afford-
able than standard, clinical-grade EEG amplifiers. A system
classifying between two stimuli and rest is designed and tested
in two experiments: on five and ten subject respectively. First,
the accuracy of the system is compared for frequencies in lower
range (17Hz, 19Hz, 23Hz, 25Hz) and higher range (31Hz, 33Hz,
37Hz, 40Hz). The mean online accuracy is 80%±15% for the
former and 67%±12% for the latter. Second, a more thorough
investigation is done by evaluating the system for frequencies
within a set of 35Hz–40Hz. Although the mean accuracy,
64%± 22%, is relatively low, most of the users were able to
achieve satisfying accuracy, with the mean reaching 82%±5%,
which would allow for an efficient, and yet pleasant, usage of
the BCI system. In each case a user dependent approach is
applied, with a calibration session lasting about five minutes.
EEG feature extraction is done using common spatial pattern
(CSP) filtering, canonical correlation analysis (CCA), and linear
discrimination analysis (LDA).

I. INTRODUCTION

A Brain-Computer Interface (BCI) is an artificial system

that allows expression of user’s intent by directly measuring

and interpreting brain activity, bypassing the body’s natural

efferent pathways (peripheral nerves and muscles). This

provides an alternative channel for communication and con-

trol [1]. Although different methods of utilizing EEG signal’s

features have been proposed for the use with BCI systems,

the steady-state visually evoked potentials (SSVEPs) have

obtained increased attention. This is mainly because with no

extensive training needed, system still shows high informa-

tion transfer rate[2].

The SSVEP is the response of the brain to the flickering

visual stimulation presented with a repetition rate from 4Hz

up to 90Hz [3]. It is usually classified into three ranges: low

(up to 12Hz), medium (12-30Hz), and high (above 30Hz).

The amplitude of brain response for lower frequencies is

larger than for higher [4], making it easier to detect and

analyze. Using lower frequencies, however, seems rather

tiring and annoying [5]. It can also be harmful, as it carries

additional risk of inducing epileptic seizures for photosensi-

tive users [6].

Researchers proved the performance of the SSVEP-based

BCI systems during many laboratory studies, mainly focus-

ing on the 5–30Hz range [7]. However, in order to introduce

BCI systems to the consumer market, some real-life issues

still have to be overcome: the stimulus must be unobtrusive,

the system must be easy enough to use, and utilize a low

cost hardware. As for the latter, although EEG amplifiers

and recorders are still, on average, less expensive than the

equipment used in other neuroimaging methods, most of

them are not suitable for the commercial use.

So far only a few studies utilizing low-cost EEG equipment

have been performed. In [8], [9], and [10] an accuracy of

95%, 80% and 75% respectively was obtained for detecting

frequencies below 15Hz. [11] evaluated 54 users applying

frequencies in 6–24Hz range, and reported a maximum

classification accuracy of 85% for the stimulus pair 8Hz

and 10Hz. However, for frequencies higher than 20Hz, the

accuracy did not exceed 60%.

This study, therefore, concentrates on a consumer-grade,

portable EEG recorder, i.e. Emotiv EEG Neuroheadset1. A

high frequency stimulus (> 30Hz) significantly decreasing

user’s visual fatigue, is applied.

The rest of this paper is organized as follows: section II

describes the equipment used during recordings; section III

presents the calibration paradigm and signal analysis meth-

ods. Section III-C.4 describes tests of the system. Section IV

presents results, and Section V contains conclusions.

II. EQUIPMENT

A. The stimulus

The stimulus for this study was provided by a set of

LED diodes. It consisted of a 8cm by 8cm square panel

of 64 white, LED diodes, with a dispersive screen in front

of them. The flicker frequency control was performed by an

Atmega 328p microcontroller mounted on an Arduino UNO2

evaluation board, and based on a hardware, 16bit timer.

B. EEG Recording

The EEG signal was recorded with Emotiv EEG Neu-

roheadset. It has already proved its usability in many ex-

periments (e.g. [12], [10], [13], [14]) and the price (about

1http://emotiv.com/eeg
2http://www.arduino.cc
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700USD) is much more affordable than clinical-grade am-

plifiers (thousands of USD).

The cap was put backwards, so that more electrodes were

placed over the visual cortex. The signal was collected with

128Hz sampling frequency. It was gathered from 8 electrodes

corresponding to O1, O2, P7, P3, P4, P8, CP5, and CP6

in the international 10-20 system. Two reference electrodes

were located at F3 and F4[15]. Each channel was filtered by

a hardware band-pass filter with cut-off frequencies at 0.2Hz

and 45Hz, and two notch filters at 50Hz and 60Hz.

III. METHODS

This section describes the data acquisition and further

analysis of EEG signals.

The acquisition consists of two parts. First, calibration is per-

formed. During this stage spatial filters (CSP) are calculated,

and classifiers trained for each user and selected frequencies.

Second, an evaluation of the trained system is performed.

The system itself consists of two stimuli, each flickering

at a constant rate. User’s objective is to focus on one of

them. The system aims to detect the SSVEP generated by

this stimulus. Proper detection enables basic control: if two

different functions are assigned to each of the frequencies,

detecting on which stimulus user is concentrating can evoke

one of these functions.

A. Subjects

15 subjects (including 3 females) participated in the exper-

iment. All subjects were fully informed about the possible

health risks concerning participation in the experiments, and

gave their consent. Ethical approval was granted by the

institutional ethics committee.

B. Calibration paradigm

The user is seated in front of a computer screen, at the

distance of about 1.5m. Two LED panels are attached to the

sides of the monitor, one on each side.

Each session consists of 40 trials, each lasting four seconds.

During each trial two stimuli are displayed; the frequencies

of stimuli are randomly chosen from a given, constant set.

User is to focus on one of the stimuli specified by a marker

(a green square displayed on the screen next to the selected

stimulus). The position of the marker is also random in each

trial. There is a two second break after each trial, during

which no stimuli are displayed, only the marker showing the

next focus point. A basic scheme of the system used in the

calibration process is presented on Fig. 1.

The randomization algorithm is designed so that during

each session the user concentrates 10 times on each of the

frequencies from the set.

After the calibration, the collected EEG data is written to a

file along with tags specifying when the stimulation occurred,

and on which frequency the user was concentrating.

C. Calibrating the system

1) Spatial filtering: Initially, the recorded EEG consists of

eight channels. A common spatial patterns method [16], [4]

LED panel LED panel

computer monitor

Fig. 1. The scheme of calibration process. Two LED panels are used as
stimuli, each flickering at different frequency. Green marker, displayed on
the monitor, shows at which stimuli user should be focusing.

provides a way of reducing the dimension of this signal to

the one that contains the most information. Essentially, this

method looks for a linear combination of channels that, for

given two time series (two conditions), maximizes variance

(energy) in one of the time series and, simultaneously,

minimizes variance in the second one.

2) Canonical correlation: The feature calculation is done

by the canonical correlation method [17]. This procedure

allows for calculation of correlation between two sets of

signals. Here it is applied to the spatially filtered signal and

a matrix which two rows contain a sine and cosine wave of

specific frequency. As the SSVEP is phase locked, using both

sine and cosine wave will automatically choose the phase that

gives the highest correlation.

3) Choosing the best frequencies: Although the system is

designed to work with two stimuli, more frequencies are used

for stimulation during the calibration stage. As the SSVEP

response to different frequencies changes from person to

person, this approach enables choosing the best stimuli pair

for the given user. The procedure is as follows:

1) For each frequency fi a CSP filter is calculated fol-

lowing procedure described in [4].

2) A pair of frequencies fi and f j is chosen.

3) Signal is filtered twice: once using the CSP filter

calculated for frequency fi, and then using the filter

calculated for frequency f j . From the filtered signals,

only channels with the highest energy during a stim-

ulation (corresponding to the largest eigenvalue) are

chosen producing signals s f i and s f j respectively.

4) Signals s f i and s f j are divided into parts, sk
f i and sk

f j

for k= 1, . . . ,40, each corresponding to one stimulation

trial.

5) For signal sk
f i (for each k), a canonical correlation is

calculated with a signal consisting of sine wave in one

channel and cosine in the other channel, both with

frequencies fi. This yields a correlation feature ρk
f i.

It is expected that the correlation is high when the

stimulation frequency during the corresponding trial

was fi, and low otherwise.

6) The same is done for signal sk
f j (for each k), only

frequency of sine/cosine signal is f j.

7) The signal is now characterized by two sets of features:

ρk
f i and ρk

f j for k = 1, . . . ,40. Each part of the signal

can be represented in a two-dimensional space – a

correlation space, i.e. ρk
i j = (ρk

f i,ρ
k
f j).
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8) Each point in the correlation space, ρk
i j, can be assigned

to one of three sets depending on the stimulation fre-

quency during the corresponding trial: if k corresponds

to the trial in which the stimulation frequency was fi,

point is assigned to class C f i. If k corresponds to the

trial in which the stimulation frequency was f j, point

is assigned to class C f j. Otherwise it is assigned to a

class Crest .

9) For each pair of classes: C f i and Crest , C f j and Crest ,

and C f i and C f j, Fisher’s Linear Discrimination Anal-

ysis (LDA) is applied. This results in a number λ l
i j

for l = 1,2,3, that describes the separation between

the classes from the corresponding pairs after the

LDA projection - λ l
i j is the largest eigenvalue that is

calculated during the LDA procedure.

10) The points 2–8 are repeated for each of the frequency

pairs. For each pair fi, f j a value Si j is calculated as:

Si j = ((λ 1
i j)

2 +(λ 2
i j)

2)sin

(

2arctan

(

λ 2
i j

λ 1
i j

))

+λ 3
i j.

(1)

First part of the equation describes how classes

C f i and C f j separate from the Crest class. The

sin

(

2arctan

(

λ 2
i j

λ 1
i j

))

part assures that cases where λ 1
i j

is much higher than λ 2
i j (or vice versa) will be punished

(the best case is when λ 1
i j = λ 2

i j). The last part increases

Si j when there is a good separation between classes C f i

and C f j.

11) The frequency pair that has the largest Si j is chosen

for further testing; this assumes that the better the LDA

separation, the better further classification will be.

4) Classifiers: The previous procedure results in a se-

lection of two frequencies, fk and fl , with corresponding

spatial filers, CSPf k and CSPf l , three sets of data points in

correlation space: class C f k, class C f l , and Crest , and three

LDA projection vectors: separating C f k and Crest , separating

C f l and Crest , and separating C f k and C f l . On these data three

logistic regression classifiers are trained: each for the pair of

classes after the LDA projection.

D. Testing procedure

The experimental setup is similar to the one from calibra-

tion described in Section III-B. The stimulation frequencies

are those chosen during the calibration procedure. The flicker

lasts for four seconds and there is a four seconds break

between trials.

The subject concentrates on one of three different points: on

any of the stimulation fields, or on the center of the monitor.

As previously, the instructions where to look are given by a

green marker displayed on the screen.

There are 30 trials in total: 10 for each frequency and 10

trials when the user is supposed to look in the middle of the

screen. This ensures that the system is tested for a situation

when the subject is not using the BCI system.

E. Testing algorithm

The system aims to classify at which stimuli the user is

looking during each trial: a two second window is analyzed

every 0.5 second. This means that during each four second

trial there are seven classifications.

1) Classification procedure: The classification procedure

is as follows:

1) The analyzed signal window is filtered with two CSP

filters (one for each frequency).

2) Canonical correlation is calculated as described in the

Section III.

3) The resulting point in the correlation space is projected

using each of LDA vectors.

4) Resulting points are classified by three logistic regres-

sion classifiers: first two classify whether the signal be-

longs to class corresponding to one of the frequencies

or the rest class. It is possible that these two classifiers

will state membership to both frequency classes - in

that case, the third classifier is used to distinguish them.

5) If during the last five (out of seven) measurements the

system classifies 3 times positively, i.e. the detected

frequency is the same as the one user is focusing on,

then it is assumed that during this trial classification

was successful. Based on this, the accuracy of

the system is calculated as a ratio of the number

of positively classified trials to the number of all trials.

IV. RESULTS

A. Comparing high and low frequencies

The first experiment was designed in order to compare

accuracies of the system for low and high frequencies. The

test consisted of two separate measurements for two sets

of frequencies: low - 17Hz, 19Hz, 23Hz, 25Hz, and high -

31Hz, 33Hz, 37Hz, 40Hz. During each test two frequencies

from each group were selected as described in Section III.

The results are presented in Table I. The average accuracies

were: 80% ± 15% for the set of lower frequencies, and

66%± 12% for the set of higher frequencies.

TABLE I

RESULTS OF COMPARISON BETWEEN LOW AND HIGH FREQUENCIES

Subject Frequencies (Hz) Accuracy (%)

S0 19, 25 86
31, 40 60

S1 17, 19 60
31, 40 60

S2 17, 23 97
33, 37 60

S3 19, 25 70
31, 33 63

S4 19, 25 66
31, 33 60

S5 17, 19 100
31, 40 93
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B. Evaluation of high frequencies

The second experiment aimed at more thorough investiga-

tion of the high frequency range. For that purpose a larger set

of high frequencies was selected: 35Hz, 36Hz, 37Hz, 38Hz,

39Hz, and 40Hz. As previously, two best frequencies were

chosen for each user. Table II presents obtained results. All

TABLE II

THE ACCURACY OF THE SYSTEM TESTED ON A LARGER SET OF HIGHER

FREQUENCIES

Subject Frequencies (Hz) Accuracy(%)

S6 39, 40 87

S7 36, 37 77

S8 35, 36 33

S9 36, 39 40

S10 35, 37 40

S11 38, 40 37

S12 37, 39 80

S13 35, 37 90

S14 35, 36 83

S15 35, 38 77

subjects performed with a mean accuracy of 64%± 22%,

however six of them reached mean accuracy of 82%± 5%.

V. CONCLUSIONS

This paper aimed at researching the ability to utilize a

consumer-grade EEG equipment, the Emotiv EEG, to detect

high-frequency SSVEP responses. Based on the presented

framework, one could imagine building an unobtrusive and

affordable BCI system, e.g. used for TV control, where a

function changing channel or volume would be assigned to

each stimulus.

Presented results show a decline in the accuracy of the sys-

tem with high-frequency stimuli when compared to the low-

frequency settings. This is in line with other experiments:

[4] has shown that SSVEP response decreases after about

15Hz, making it harder to detect. [7] stated explicitly that

only about 65% of users were able to use BCI when it

came to frequencies above 30Hz. This finding is confirmed

in the second presented experiment where six out of ten users

reached an accuracy of 82%.

The fact that one third of subjects are not able to use

high-frequency SSVEP systems is a challenge in designing

BCIs. On one hand, those systems should incorporate high-

frequencies as the users find them preferable [7]. On the

other, BCIs must include lower-frequencies for unresponsive

subjects in order to make the system usable. This implies that

the application should use both high and low frequencies

during the calibration to establish the mode of operation.

Moreover, frequencies should be selected from a wide set,

as the SSVEP response is very subject dependent. This is

visible when comparing tables I and II. Higher accuracy in

the second experiment might be due to a larger number of

frequencies selected for the calibration.

An interface designed this way, incorporating higher and

lower frequencies, and calibrated to a specific user, would

enable both good user experience and efficient operation.
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