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Abstract— Optic cup localization/segmentation has attracted
much attention from medical imaging researchers, since it is
the primary image component clinically used for identifying
glaucoma, which is a leading cause of blindness. In this work,
we present an optic cup localization framework based on
local patch reconstruction, motivated by the great success
achieved by reconstruction approaches in many computer vision
applications recently. Two types of local patches, i.e. grids
and superpixels are used to show the variety, generalization
ability and robustness of the proposed framework. Tested on
the ORIGA clinical dataset, which comprises of 325 fundus
images from a population-based study, both implementations
under the proposed frameworks achieved higher accuracy than
the state-of-the-art techniques.

I. INTRODUCTION

Glaucoma is a leading cause of blindness, which affects
about 60 million people [1] and is responsible for approxi-
mately 5.2 million cases of blindness (15% of world total)
[2]. Unfortunately, glaucoma cannot be cured since it is a
serious irreversible disease which affects the optic nerve
head.

Studies in [3] and [4] suggest that early detection and
treatment of glaucoma is able to reduce the risk of visual
field loss; thus early detection is critical to prevent blindness
and aid in glaucoma management. However, glaucoma does
not have any early warning signs and more than 90% of
the afflicted people were unaware of their optical neurode-
generation [5][6]. Glaucoma patients usually first lose their
peripheral vision, and then eventually the central vision to
become fully blind.

To facilitate effective, efficient and economic glaucoma
screening, several computer-assisted glaucoma detection
techniques are proposed based on low-cost fundus images
in recent years. These CAD systems usually follow the
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Fig. 1. Illustration of optic disc and cup.

Fig. 2. Effect of glaucoma on cup-to-disc ratio (CDR): optic disc (blue)
and cup (green). Left: healthy case with normal(small) cup size, Right:
glaucoma case with large cup size.

orphamologist to detect glaucoma by performing automatic
assessment on certain image cues related to glaucoma.
Among the image cues studied for glaucoma assessment,
the cup-to-disc ratio (CDR) measure (see Fig. 1), the ratio
between the vertical optic cup diameter and vertical optic
disc diameter, is a major clinical feature used to gauge the
cupping size in glaucoma. The optic disc is located where the
ganglion nerve fibers congregate at the retina. The depression
inside the optic disc where the fibers leave the retina via the
optic nerve head (ONH) is known as the optic cup. The area
between the optic nerve and cup is known as the rim. As
illustrated in Fig. 2, a larger CDR value usually indicates
higher glaucoma risk.

In clinical practises, the CDR value is calculated from
a manually outlined optic disc and cup. However, manual
annotation is labor intensive and subjective, thus automatic
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approaches are designed for disc and cup segmentation in
recent years.

In previous works, optic disc segmentation is relatively
well studied and has achieved considerable accuracy, by
using various techniques such as intensity gradient analysis,
Hough transforms, pixel classification [7], vessel geometry
analysis, deformable models and level sets [8] [9] [10].

In this paper, we study the challenging cup segmentation
problem [11]. Previous cup segmentation algorithms can be
roughly categorized into 3 types: 1) classifying pixels as part
of the cup or rim [7][10]; 2) evaluating the possibilities of
large regions (e.g. sliding windows) to determine an optimal
cup candidate [13]; 3) classifying superpixels (small regions)
as part of the cup or rim [14] [15]. Currently, pixel based
approaches have the lowest accuracy and superpixel based
approaches are state-of-the-art.

In most of the previous methods, a discriminant classifica-
tion/regression model (e.g. SVM and SVR) is prelearned to
label/classify each testing object. It has recently been shown
in some computer vision applications, e.g. gait recognition
[16] and prostate segmentation [17], higher accuracy can
be obtained through reconstruction (a.k.a. atlas approach
in medical image computing area) from the samples. We
demonstrate in this paper there are appreciable improvements
in cup localization accuracy with the reconstruction-based
approach. In many applications, reconstruction is applied
to whole images represented by raw pixel values; however,
good registration/alignment is needed to guarantee high
accuracy, which is not applicable for some applications.
In contrast to such global reconstruction approach, local
patch reconstruction is used in this work which can better
deal with misalignment and enlarge the reference dictionary
to get better reconstruction of each test unit. It is also
worth mentioning that global reconstruction can be treated
as an extreme case of the local reconstruction, when each
test sample has only one local patch. In addition, we also
demonstrate that other image representations can be used
for reconstruction, especially for the objects with different
shapes and sizes.

Tested on the large ORIGA dataset [12] comprising of
325 image from a population-based study, four variant imple-
mentations of the proposed optic cup localization framework
achieved improvement on cup localization accuracy, compar-
ing with the current state-of-the-art optic cup segmentation
methods, which demonstrate the effectiveness and robustness
of the proposed framework.

II. LOCAL PATCH RECONSTRUCTION BASED CUP
LOCALIZATION

A. Framework

In this work, we follow prior arts [14][15][13], localizing
the optic cup from a given disc image which is obtained
by using segmentation methods such as [8]. As illustrated
in Fig. 3, the input disc image is first divided into local
regions (e.g., grids and superpixels), and then each patch
is reconstructed with reference patches selected from train-
ing samples (reference images) to get a label for each

Fig. 3. Flowchart of the proposed cup localization framework using local
patch reconstruction.

pixel/patch, and an unique cup region is finally determined
by ellipse fitting.

B. Formulation

For a given local patch y ∈ Rd×1 to be reconstructed, we
want to compute optimal linear reconstruction coefficients
w ∈ Rk×1, |w| = 1, with a dictionary consists of k reference
patches, to minimize the reconstruction error ||y − Xw||2.
The dictionary is formed by k most similar patches selected
from reference discs in near location to the test patch (i.e.
in our implementation, the center points of reference patches
are at most 1/10 disc diameter far from the test patch center
location), denoted by X = {x1, x2, · · · , xk} ∈ Rd×k, where
each column xi is a reference patch expressed as a vector
(e.g., raw pixel values or high level features).

Our objective function also includes a cost term that
penalizes the use of references that are less similar to the
test patch. Let us denote the costs for the reference patches
in X as the vector c = {c1, c2, · · · , ck}> ∈ Rk×1, where ci
is the cost of using xi for reconstruction. The overall cost
term can then be expressed as ||c � w||2 where � denotes
the Hadamard product. Combining this cost term with the
reconstruction error gives the following objective function:

min
w
||y −Xw||2 + λ||c� w||2,

s.t. |w| = 1,
(1)

where λ > 0 is a regularization parameter. This objective can
be minimized in closed form using the Lagrange multiplier
method, without the need for iterations:

w =
1

1>(X̂>X̂ + λC>C)1
(X̂>X̂ + λC>C)−11,

X̂ =(1⊗ y −X),

(2)

where C = diag(c) and ⊗ denotes the Kronecker product.
For simplicity, we define in our implementation the cost ci

5419



as the Gaussian distance between the test patch y and the
i-th reference patch xi, i.e.,

ci = exp(||y − xi||2/σ2), (3)

where σ is a parameter that accounts for imaging noise.
When the cost term is excluded, i.e., setting λ = 0,

the reconstruction method is the well known locally linear
embedding (LLE), which is also compared in the experiment.

C. Implementations

In this subsection, two implementations of this framework
are presented in detail. Different processes are taken before
and after the reconstruction of two types of local patches
(i.e., grids and superpixels), according to the characteristics
of each local patch type. As claimed in [14], [15] and
[18], superpixels have the advantage of preserving local
boundaries, while grids don’t. Therefore superpixel label is
predicted in a whole since most pixels in a superpixel have
the same label, similar to the state-of-the-art supperpixel
classification based cup localization approach, where the
reconstruction is used as a superpixel labelling method. In
addition, superpixels have different shapes and sizes, and
original raw image reconstruction can not be performed
directly, thus high level visual features are used to perform
reconstruction. In contrast, raw image values are used for
grid reconstruction, and each pixel label is predicted by
applying the reconstruction coefficients on the cup masks
corresponding to reference patches.

With either implementation, label of each pixel can be
obtained, and then the minimum ellipse that encompasses
all the pixels with positive labels (i.e. cup) is computed
to produce the final detection result, represented by ellipse
center/elongation parameters (µ̂, ν̂, α̂, β̂).

1) Implementation 1 (grid reconstruction): Each disc im-
age is resized to 256 × 256 and then divided to 16 × 16
half overlapped blocks/grids. Each block is a local patch
represented with raw pixel values, thus each local patch
has a 256 dimensional feature (i.e., d = 256) in this im-
plementation. After the optimal reconstruction coefficient w
of a test patch y is obtained, the weighted sum

∑k
i=1 wimi

of the cup masks (mi ∈ R16×16) corresponding to the k
reference patches is calculated, which is also a 16×16 block.
After all grids are reconstructed, the label of each pixel (i.e.,
predicted cup mask) is obtained via consolidating all the
reconstructed cup masks of each block. Since the blocks are
half overlapped, most pixels are included in 4 blocks; thus
the initial label of each pixel is defined as the average value
of all its corresponding predictions.

2) Implementation 2 (superpixel reconstruction): When
superpixel is used as local patch, the reconstruction frame-
work can be used to label each superpixel, similar to the
method in [14] and [15] under the same superpixel labelling
framework. We follow these works, utilizing the SLIC (Sim-
ple Linear Iterative Clustering) algorithm [18] to segment
the disc image into compact and nearly uniform superpixels
(see Fig. 4). Superpixels are then presented by features
used in [14] and [15]. For the i-th superpixel, we extract

Fig. 4. Example of superpixel segementation using SLIC [18].

a feature vector xi that consists of position information
(denoted by (ui, vi, ρi), mean RGB colors (ri, gi, bi) and
a 256-bin histogram (hri , h

g
i , h

b
i ) for each color channel.

Features are then normalized to avoid magnitude differences
among dimensions. The label of a test superpixel is predicted
by calculating the weighted sum

∑k
i=1 wili of the cup/non-

cup labels (li ∈ {+1,−1}) corresponding to the k reference
superpixels. All pixels in the same superpixel share the
same label. For efficiency, supepixels are segmented at only
one scale (512 superpixels per image), thus superpixels are
non-overlapped. After multi-scale superpixel segmentation is
performed, similar averaging process can be applied to get
the final label of each pixel.

III. EXPERIMENTS

In this section, we first describe the evaluation criteria,
and then evaluate our local patch reconstruction based cup
localization framework through an experimental comparison
to pixel based segmentation methods [10], sliding window
method [13] and the state-of-the-art superpixel classification
method [15]. For fair comparison, we use the same dataset
and training/testing split method as in [14] and [15], i.e.,
using the ORIGA dataset comprised of 325 images, where the
first 150 images are used as training samples and the other
175 images are used for testing. The optimal parameters are
determined by using cross validation on the 150 training
images, for all methods. To validate the robustness of the
proposed approach, we also compared four implementations
under the proposed reconstruction framework, using grid or
superpixel as local patch, performing the reconstruction with
or without cost term in Eq. (1).

A. Evaluation criteria

Three evaluation criteria are commonly used for cup
localization/segmentation, namely non-overlap ratio (m1),
relative absolute area difference (m2) and absolute cup-to-
disc ratio (CDR) error (δ), defined as:

m1 =1− area(Edt

⋂
Egt)

area(Edt

⋃
Egt)

,

m2 =
|area(Edt)− area(Egt)|

area(Egt)
,

δ =|CDR(Edt)− CDR(Edt)|,

(4)
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TABLE I
PERFORMANCE COMPARISON TO STATE-OF-THE-ART CUP

LOCALIZATION/SEGMENTATION METHODS

Method m1 m2 δ
Grid reconstruction w cost term 0.258 0.263 0.077

Pixel classification [10] 0.491 0.859 0.159
Sliding window regression[13] 0.289 0.409 0.106
Superpixel classification [15] 0.281 0.354 0.089

Relative error reduction to [10] 47.5% 69.4% 51.6%
Relative error reduction to [13] 10.7% 35.7% 27.4%
Relative error reduction to [15] 8.2% 25.7% 13.5%

TABLE II
PERFORMANCE COMPARISON OF DIFFERENT IMPLEMENTATIONS OF THE

RECONSTRUCTION FRAMEWORK

Patch Cost Term m1 m2 δ
Grid w 0.258 0.263 0.077
Grid w/o 0.266 0.260 0.081

Superpixel w 0.261 0.263 0.080
Superpixel w/o 0.264 0.278 0.084

where Edt denotes a detected cup region, Egt denotes the
ground-truth cup region, and CDR(·) calculates the vertical
diameter of the cup. Among the three metrics, m1 is most
related to cup localization accuracy and δ is most related
to glaucoma diagnosis; thus these two criteria are relatively
more important.

B. Comparison to prior art

We compared our local reconstruction based approach
(with the implementation of Grid reconstruction w cost
term) to state-of-the-art cup segmentation methods, namely
Pixel classification) [10], Sliding window regression [13]
and Superpixel classification [15]. The results are shown
in Table I. Compared with the most advanced Superpixel
approach [15], our method is shown to significantly improve
cup localization accuracy in terms of m1, m2 and CDR
error (δ), which are reduced by 8.2%, 25.7% and 13.5%,
respectively.

C. Comparison of different implementations of the proposed
framework

To show the generalizability and robustness of the pro-
posed framework, four implementations of the proposed
framework are also compared. The implementations use
either grid or superpixel as local patch, with or without the
cost term, respectively. From the results listed in Table I and
Table II, one can observe that all of the four local recon-
struction approaches outperform existing methods. Among
the four implementations, grid reconstruction with cost term
achieved the lowest error rates in terms of m1 and δ, which
are more important for cup localization evaluation. One
can also observe that including the cost term can slightly
reduce the errors; however it also increases the computing
complexity.

IV. CONCLUSION

For cup localization in glaucoma detection, we proposed
an effective and robust local patch reconstruction framework.
Tested on a large clinical dataset with three evaluation

criteria, all of the four different implementations under the
proposed framework achieved higher accuracies compared
to prior arts. In future work, we plan to evaluate the frame-
work on other medical image segmentation and classification
problems.
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