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Abstract— Mobile wearable sensors have demonstrated great
potential in a broad range of applications in healthcare and
wellness. These technologies are known for their potential to
revolutionize the way next generation medical services are
supplied and consumed by providing more effective interven-
tions, improving health outcomes, and substantially reducing
healthcare costs. Despite these potentials, utilization of these
sensor devices is currently limited to lab settings and in
highly controlled clinical trials. A major obstacle in widespread
utilization of these systems is that the sensors need to be
used in predefined locations on the body in order to provide
accurate outcomes such as type of physical activity performed
by the user. This has reduced users’ willingness to utilize such
technologies. In this paper, we propose a novel signal processing
approach that leverages feature selection algorithms for accu-
rate and automatic localization of wearable sensors. Our results
based on real data collected using wearable motion sensors
demonstrate that the proposed approach can perform sensor
localization with 98.4% accuracy which is 30.7% more accurate
than an approach without a feature selection mechanism.
Furthermore, utilizing our node localization algorithm aids the
activity recognition algorithm to achieve 98.8% accuracy (an
increase from 33.6% for the system without node localization).

I. INTRODUCTION

Physical activity is an important component of many
chronic conditions such as diabetes, heart failure, cardiovas-
cular disease, and cancer. Physical activity is defined as bod-
ily movement produced by the contraction of skeletal muscle
to substantially increase energy expenditure. Participation in
regular physical activity improves blood glucose control and
can prevent or delay diabetes and heart diseases. Observed
benefits of physical activity include positive effects on lipids,
blood pressure, cardiovascular events, mortality, and quality
of life [1], [2].

Recent advancements in wearable sensors and wireless
communication allow continuous and remote monitoring of
physical activities in patients with chronic conditions. In
particular, wearable motion sensors such as accelerometers
and gyroscopes [3] with embedded wireless connectivity
are used for physical activity monitoring. Physical activity
interventions using wearable sensors often involve activ-
ity recognition, which refers to detection of activity types
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(e.g., walking, running, sitting, biking, and standing). Un-
fortunately, current approaches for activity recognition use
predefined sensor locations, which impose much discomfort
for patients as they are not allowed to use sensors on their
own desired body locations. For example, while one patient
may prefer to use his/her smartphone in his pocket, another
patient may prefer to carry the smartphone in a backpack
or purse. One patient may prefer to use a wrist-band sensor
on his right wrist, while another patient may prefer a left
wrist setting. Failure to adhere to the predefined protocols
(i.e., using sensors of pre-specified body locations) results in
drastic reduction in accuracy of physical activity monitoring
such as activity recognition algorithms. Therefore, new algo-
rithms and signal processing techniques are needed to detect
location of wearable sensor automatically and in real-time as
they are being used by patients. This problem is generally
referred to as on-body sensor localization.

A. Seamless Wearable Sensing

An important aspect of designing future mobile wearable
sensors is to offer these systems in a plug-and-play manner.
In other words, end users need to handle different types
of sensors with a minimum amount of supervision and
intervention. Since elderly and non-expert individuals are
primary users of these systems, reliability, ease of use,
and robustness tend to be main challenges of large scale
mobile wearable sensors. Consequently, an urgent need is to
design these systems in a way that they deliver non-intrusive,
seamless and automatically configurable sensing. Automatic
node localization is an important aspect of seamless sensing.
By performing node localization automatically and accu-
rately, end users can use the system with no concerns on
how/where the sensor node needs to be worn on the body. As
a result, automatic on-body localization is needed to enhance
usability, adaptability, ease of setup, and accuracy of mobile
wearable sensors.

B. Related Work

The ultimate goal of on-body node localization is to find
the location of the wearable sensor nodes prior to further
processing the motion sensor signals (e.g., accelerometers,
gyroscopes). Activity recognition is one example of the phys-
ical activity monitoring whose performance can be severely
compromised in absence of an automatic node localization
algorithm. The number and location of wearable sensors vary
in different activity recognition applications. A survey study
in [3] reports that the number of sensor nodes used for
activity recognition may vary from a single node to 19 sensor
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nodes resulting in an accuracy that ranges from 79% to 98%.
The most common algorithms for movement classification
using wearable motion sensors include k-Nearest-Neighbor
(kNN), Hidden Markov Models (HMM) and Support Vector
Machine (SVM) [4]. Based on these specifications, we use a
typical activity recognition framework as a basis for on-body
sensor localization. Therefore, we minimize the overhead of
such algorithms to the system.

Most activity recognition algorithms use a fix set of
nodes and predetermined placement. However, there has
been less effort in detecting location of wearable nodes.
Major drawbacks with current on-body sensor localization
algorithms include either lack of sufficient accuracy or need
for a priori knowledge about the activity being performed
by the subject. For example, a recent study in [5] developed
an on-body sensor localization algorithm that applies only to
walking movements. The approach presented in [6] assumes
that movement types are known a priori. In real world
applications, however, we are often facing situations that
knowledge about human movements does not exist a priori.
In fact, activity recognition is often the main goal of utilizing
mobile wearable motion sensors.

Authors in [7] proposed an algorithm for on-body position
of wearable sensors. They introduced a method to determine
the time period of walking, and then they used a C4.5
classifier to find the location of node in four different places
(wrist, breast pocket, trousers pocket, and right eye). In
another study [8], authors introduced a method to perform
localization based on daily activity routines. This limited
set of nodes is not applicable to many current body sensor
networks. Most of applications will need much more number
of sensors.

Another localization algorithm is presented in [5]. While
this study enhances the number of sensors compare to previ-
ous works, implementation of algorithm is based on walking
activity. They used an unsupervised technique to discover the
walking activity based on frequency and consistency during
long period of time. Another paper introduced a method to
find that two portable devices are carried by the same person
[9].

C. Contributions

On-body sensor localization without prior knowledge
about the type of the activity being performed is a hard
problem mainly due to the large number of potential body
locations that can accommodate a wearable sensor and also
the large amount of activities that can be performed. Prior
research in this area either assumes that the type of activity is
known a priori or uses computationally expensive processing
algorithms for node localization. Furthermore, research in
the area of on-body sensor localization is very new and it
is not clear what algorithms are most effective in detecting
sensor locations and what factors affect performance of such
algorithms. Motivated by these needs, we study the problem
of on-body sensor localization in the context of pattern
recognition and signal processing. Our goal in this paper is
to identify signal processing algorithms that are promising

Data 
Sampling

Feature 
Extraction

Feature 
Selection 
Algorithm

Data 
Sampling

Feature 
Extraction

…

node ‘1’

node ‘N’

Building 
Sensor 

Localization
Model

Data 
Sampling

Feature 
Extraction

Unknown 
node

Localization node location

Tr
ai
ni
ng

Re
al
‐t
im

e 
Ex
ec
ut
io
n

Prominent Features
Localization Model

Fig. 1. Overall data processing flow: training phase and real-time execution
of the sensor localization algorithm

for on-body sensor localization and determine parameters
that affect performance of such algorithms. To this end,
we use real data collected from several subjects performing
transitional movements to develop and fine tune classification
algorithms for sensor location detection. Our results show
that a computationally simple classification algorithm such
as k-Nearest-Neighbor (kNN) classifier that operates on a
small but intelligently constructed feature space can provide
over 98.4% accuracy in detecting 7 wearable sensor nodes
used for activity recognition.

II. MATERIALS AND METHODS

Our approach in using acceleration and angular velocity
data for on-body localization is motivated by applications
of these sensors in activity recognition. Most previous work
finds location of the nodes based on a specific activity (e.g.,
walking). This assumption requires that the users repeat pre-
defined activities before practical use of monitoring system.
Such a calibration procedure may create even more burden
that using a setting of sensor nodes with predefined on-body
locations. As we mentioned previously, the main goal is
to provide a non-intrusive way of installation that help us
move toward fully plug-and-play wearable sensing. In our
approach, we attempt to provide a method to execute the
localization with minimum intrusion. Our approach to on-
body sensor localization is pattern recognition and event clas-
sification, where sensor locations are considered as events
of interest to be detected. The first step is to collect data
for variety of movements. Next, we extract an exhaustive
set of features from the collected acceleration and angular
velocity signals. We then select most prominent features
from the large set of feature pool. A variety of classification
algorithms are then applied on the reduced feature space
to assess performance of the sensor localization algorithm.
A high level diagram demonstrating training and execution
phases of the algorithms is shown in Fig. 1. In the following,
details of each step are provided.

A. Data Collection

We used a network of wearable motion sensors with ac-
celerometer and gyroscope sensors and wireless connectivity
to collect data. Fig. 2 shows the body locations on which the
sensor is worn during data collection. The data collection
was performed for a variety of movements. The reason for
using different types of movements is to create a reasonable
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ID Location

1 Waist

2 Right Wrist (R-Wrist)

3 Left Wrist (L-Wrist)

4 Right Arm (R-Arm)

5 Left Thigh (L-Thigh)

6 Right Ankle (R-Ankle)

7 Left Ankle (L-Ankle)

Fig. 2. Wearable sensor locations

No. Movement
1 Stand to Sit
2 Sit to Stand
3 Sit to Lie
4 Lie to Sit
5 Bend to Grasp
6 Rising from Bending
7 Kneeling Right
8 Rising from Kneeling
9 Look Back

10 Return from Look back
11 Turn Clockwise
12 Step Forward
13 Step Backward
14 Jumping

Feature Description

AMP Amplitude of Signal Segment

MED Median of the Signal

MNVALUE Mean of the Signal

MAX Maximum Value of Signal

MIN Minimum Value of Signal

P2P Peak to Peak Amplitude

STD Standard Deviation

VAR Variance

RMS Root Mean Square Power

S2E Stand to End Value

(a) Experimental Movements (b) Extracted features from each sensor signal

Fig. 3. List of experimental movements and extracted features

dataset for training a classifier for localization purposes.
Therefore, on-body localization could be performed without
supervision in the testing mode. The data collection is
performed with 14 different types of transitional movements,
so the system could be able to detect the patterns in most
common activities of daily life. A list of the transitional
movements is shown in Fig. 3(a). Three healthy subjects aged
between 25 and 35 were asked to perform each experimental
movement 10 times. Each sensor nodes was programmed to
wirelessly transmit data to a laptop computer where all the
data were stored for off-line data processing and algorithm
development.

B. Feature Extraction

Potentially, there are many different features that can
be extracted from human activity signals. Previous studies
use statistical features that have shown effective in human
activity recognition. For node localization purposes, however,
it is largely unknown what features are most effective. Thus,
one of our goals in this paper was to explore features that
are most effective for node localization. For this purpose, we
extracted an exhaustive set of features that may be useful
for on-body localization. The set of features extracted from
individual sensor streams is shown in Fig. 3(b). In addition
to these features, we extracted 10 morphological features
from each signal segment. Morphological features attempt
to capture structural properties of the signal. In this paper,
morphological features are samples that are evenly spaced
in time over the entire signal segment associated with a
particular movement.

C. Feature Selection

Each one of the seven sensor nodes in our network consists
of a 2-axis gyroscope and a 3-axis accelerometer. Thus,

TABLE I
SELECTED FEATURES

No. Feature Sensor
1 MED Y-Axis Gyro
2 MNVALUE Y-Axis Acc
3 MIN X-Axis Gyro
4 STD Z-Axis Acc
5 STD X-Axis Gyro
6 STD Y-Axis Gyro

the total number of features is relatively high for real-time
execution on wearable sensor nodes with limited processing
power and energy sources. Furthermore, an exhaustive fea-
ture set potentially includes features that can lower accuracy
of sensor localization. Therefore, we use a feature selection
algorithm to lower the number of signal segment features.
We utilize the feature selection algorithm in [10] to select a
small subset of the extracted features for sensor localization.

III. RESULTS

As shown in Fig. 3(b) and discussed in Section II-B,
we extracted 20 features from each signal segment. Given
that each sensor node has 5 embedded sensor axes, the
total number of features extracted from each sensor node
is 20× 5 = 100. We applied the feature selection algorithm
discussed in Section II-C to reduce this number. The results
show that only 6 features are prominent for sensor node
localization. These features are listed in Table I.

Table II shows accuracy performance of our node local-
ization using a kNN classifier. As it can be observed from
this table, all the nodes can be detected with a minimum
recall of 94% and minimum precision of 96%. On average,
the system achieves 98.41% and 98.42% recall and precision
respectively.

Table III shows the accuracy of our sensor localization
as well as the compressive sensing approach in [6]. As
shown in this table, the feature selection algorithm plays
an important role in eliminating insignificant features that
can lower the accuracy of the node localization algorithm.
When all features (i.e., 100 features per node) are used
for localization, the overall accuracy of the kNN algorithm
is only 75.3%. The feature selection algorithm improves
the accuracy by 30.7%. Beside the kNN classifier, three
other classifiers are used for comparison. The SVM classifier
obtains 99.8% accuracy which is the highest accuracy among
all other cases. Furthermore, while our localization algorithm
uses only 6 features from each sensor node, it outperforms
the algorithm presented in [6] which uses a large number of
features for node localization.

Fig. 4 shows the accuracy of activity recognition in
presence of our sensor localization algorithm compared to
the case without a sensor localization algorithm. For the
case without localization, we assumed that sensor nodes are
randomly placed on the body. We repeated the experiment
10 times each with a pseudo random combination of the
nodes. When an accurate localization algorithm is utilized,
the activity recognition algorithm (a kNN neighbor classifier)
achieves 98.8% accuracy in detecting the 14 movements.

5387



TABLE II
PERFORMANCE OF THE PROPOSED NODE LOCALIZATION ALGORITHM USING FEATURES IN TABLE I

Waist R-Wrist L-Wrist R-Arm L-Thigh R-Ankle L-Ankle Total Recall
Waist 209 0 0 0 1 0 0 210 99.5%
R-Wrist 2 208 0 0 0 0 0 210 99.0%
L-Wrist 0 0 209 0 1 0 0 210 99.5%
R-Arm 0 0 0 210 0 0 0 210 100%
L-Thigh 3 0 0 0 199 8 0 210 94.7%
R-Ankle 2 0 0 0 6 202 0 210 96.2%
L-Ankle 0 0 0 0 0 0 210 210 100%
Total 216 208 209 210 207 210 210
Precision 97% 100% 100% 100% 96% 96% 100%

TABLE III
ACCURACY (IN %) OF THE PROPOSED APPROACH COMPARED TO PREVIOUS WORK AND ALL-FEATURES CASE

Classification/Node Waist R-Wrist L-Wrist R-Arm L-Thigh R-Ankle L-Ankle Average
kNN (all features) 79 68 70 70 78 75 87 75.3
SVM (all features) 99.8 100 100 100 100 99.8 100 99.8
ANN (selected features) 99 100 100 100 98.2 93.5 100 98.7
kNN (selected features) 97 100 100 100 96 96 100 98.4
RBF Network (selected features) 99 99.8 98 100 87 82 100 95.1
Compressive Sensing [6] 95 99 98 99 92 92 98 96.1

Fig. 4. Accuracy of activity recognition for individual movements with
and without sensor localization

The accuracy of the activity recognition algorithm is reduced
to an average of 33.6% in absence of a node localization
algorithm.

IV. CONCLUSION

In this paper, we presented an approach for on-body
sensor location with applications in health and wellbeing.
Our approach relies on computationally simple classification
algorithms that operate on a small set of features extracted
from wearable sensor nodes. We demonstrated the potential
of this approach for accurate localization of wearable sen-
sors. The algorithm not only outperforms previous techniques
in terms of accuracy but also obtains much less computing
complexity.

An important observation based on the results obtained
in this paper is that a limited number of features extracted
from a sensor node can be effectively used to precisely detect
location of an on-body sensor. It is also interesting that these
prominent features are associated with both accelerometer
and gyroscope sensors.

A wearable sensor can be potentially worn on many
different locations on the body. In this paper, we focused
on an experimental setting with 7 body locations. In future,
we plan on collecting data from larger body sensor networks
where each body segment is associated with a wearable
sensor. We plan on exploring inter-node correlations that
neighboring nodes may exhibit which can potentially result
in a hierarchical approach to sensor localization.
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