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Abstract— This paper presents a method of estimating heart 
rate from arrays of fiber Bragg grating (FBG) sensors 
embedded in a mat. A cepstral domain signal analysis 
technique is proposed to characterize Ballistocardiogram 
(BCG) signals. With this technique, the average heart beat 
intervals can be estimated by detecting the dominant peaks in 
the cepstrum, and the signals of multiple sensors can be fused 
together to obtain higher signal to noise ratio than each 
individual sensor. Experiments were conducted with 10 human 
subjects lying on 2 different postures on a bed. The estimated 
heart rate from BCG was compared with heart rate ground 
truth from ECG, and the mean error of estimation obtained is 
below 1 beat per minute (BPM). The results show that the 
proposed fusion method can achieve promising heart rate 
measurement accuracy and robustness against various sensor 
contact conditions. 

I. INTRODUCTION 

Ballistocardiogram (BCG) has gained increasing research 
interests recently due to the advancement of vibration sensing 
technology and the feature of unobtrusiveness of the sensing 
devices.  Unobtrusive and continuous monitoring of heart 
rate has wide applications at homes or hospitals. 

A key challenge in BCG analysis is the presence of strong 
variation of morphology of individual heart beats [1]. 
Position and posture of a subject in bed could be the factors 
of such variation. As a result, beat-to-beat interval or heart 
rate detection in time domain is very difficult. 

Finding heart rate from BCG signals in frequency domain 
has the advantage of not relying on specific peaks or 
templates in waveform. However, BCG is a nonstationary 
signal, thus a prominent frequency component may not 
always present in a fixed window of BCG signal. In [2], an 
adaptive window auto-correlation approach was proposed to 
detect beat-to-beat interval, and a dynamic programming 
method is used in the extraction of smooth interval track.  

On the other hand, multichannel BCG can provide 
redundancy for improved detection performance. One 
example of such sensors is Fiber Bragg grating (FBG) sensor. 
A number of sensors on a single optical fiber could pick up 
BCG at different locations, and presumably some of the 
sensors could provide good quality signals. There have been 
different ways of fusing the multichannel BCG signals. In 
[3], signals from sensors are summed together before A/D 

 
 

conversion. In [4], spectra from different sensors are 
averaged, before cepstrum is derived. In [5], heart rate 
readings are first obtained from different sensors and then 
fused with Bayesian fusion, of which one of the sensors is 
capacitive ECG. 

This paper presents a method of estimating heart rate 
from multichannel BCG using FBG sensors. A cepstral 
domain smoothing and peak detection technique is proposed 
to reliably estimate heart rate. The multiple sensors are fused 
naturally in the cepstral domain, as a higher value of 
cepstrum coefficients reflect higher signal to noise ratio. We 
believe the fusion method is advantageous to the current 
approaches using value averaging. Experimental results have 
demonstrated the accuracy of heart rate estimation, and the 
effectiveness of the fusion method. 

II. OVERVIEW 

 
Figure 1. FBG heart rate monitoring system 

In our heart rate monitoring system, the FBG sensor mat 
is connected to an optical interrogator and PC as shown in 
Figure 1. Each sensor mat consists of 3 FBG sensor arrays 
with 6 sensors each. The sensor arrays are further packaged 
onto a Polycarbonate (PC) sheet and connected to the FBG 
interrogator using three optical channels. BCG signals from 
the channels/sensors are transferred to the PC, and heart rate 
estimation is performed on the PC in real-time. 

Figure 2 shows the major steps of the proposed heart rate 
estimation method. First, the signal from each sensor is 
transformed from time domain to cepstral domain with a 
smoothing process. Second, the signal from different sensors 
of a same array is fused by utilizing the cepstrums. And 
finally, the heart rate is estimated from the fused signal by 
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detecting peaks in the cepstrum. Details of the algorithm are 
presented in the following sections. 

 
 

Figure 2. Basic algorithm flow of the heart rate estimation method 

III. CEPSTRUM WITH SMOOTHING 

A. BCG Signal 

The FBG sensors can pick up the body movement due to 
heart beat as well as respiration of the human subject. The 
BCG signal is typically obtained by bandpass filtering the 
raw signal from sensors. We used cut-off frequency of 
0.5Hz and 20Hz for the bandpass filters. Figure 3 illustrates 
BCG (lower subplot) together with simultaneously collected 
ECG (upper subplot). 

 
Figure 3. ECG and BCG signals 

 Unlike ECG, the repeating pattern of each heart beat is not 
so obvious, and it is difficult to use a uniform time-domain 
landmark for automatic heart beat identification. 

B.   Cepstrum with smoothing 

For heart rate estimation, we are interested in finding the 
repeating rate in the BCG instead of identifying each heart 
beat pattern. This is similar to detecting pitch from audio 
signals. We hence looked into cepstrum of BCG for heart rate 
estimation, as Cepstrum is typically used for pitch detection 
in audio or speech [6,7].  

BCG is however a non-stationery signal and periodicity 
changes from time to time or even from beat to beat. The 
peak in the cepstrum of BCG signal is usually not very 
prominent. We thus propose a smoothed cepstrum for heart 
rate estimation. By applying low pass filtering on the 
cepstrum, the main peak becomes more prominent and easier 
to be detected and tracked. Figure 4 shows the cepstrums of a 
3 second BCG signal after applying low pass filtering of 
different cut off frequencies. The x-axis is the lag-time in 
cepstrum measured in number of samples (sampling rate is 
250Hz). We observed that the lower is the cut off frequency, 
the more prominent the peak becomes. In this scenario, the 
lag-time range is from 0.4 second to 1.5 seconds (the normal 
human heart beat duration). 

 
Figure 4. Cepstrum with smoothing (lower plot with lower cut off 

frequency of low-pass filtering). 

IV. SENSOR FUSION 

Sensor fusion is important in our system, since the contact 
condition of different sensors in an array can be different. 
The variation can be due to the position or posture of a 
human on the bed. Adding up the signals of all the sensors in 
time domain may not result in good performance, because the 
dynamic range of different sensors may not be related to 
signal quality or noise levels. However, in cepstral domain, 
the magnitude of cepstral coefficient is naturally related to 
periodicity of the signal, which is the focus in heart rate 
estimation.  

We fuse the signals by taking the maximal value of each 
lag time bin among all the sensors to be fused, and in our 
case the 6 sensors in an array. Figure 5 illustrates the 
cepstrogram of a few minutes of FBG data. The 6 small 
images show the cepstrogram of 6 sensors, and the bigger 
image on the right shows the fused cepstrogram. In the plots 
of cepstrogram, the x-axis corresponds to lag time, and y-axis 
corresponds to time of the cepstrum analysis window. 

 

 
Figure 5. Sensor fusion based on cepstrum 

 

V. HEART RATE ESTIMATION 

Heart rate estimation could be performed in the fused 
cepstrum or in the cepstrum of any individual sensor.  
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A.  Multiple Level Cepstrum Peak Detection 

A peak in the cepstrum corresponds to a lag time that a 
heart beat signal repeat itself in the time domain. Thus for 
heart rate estimation, the goal is to find the right peak in the 
cepstrum. We propose to detect the peak from multiple level 
cepstrum. The detection starts from a more smoothed 
cepstrum, where it finds the smooth major peak, and then 
proceeds to the finer smooth level, where the peak is detected 
within a range that is defined in the earlier stage. We used a 
simple peak detection method at any level, where the peak 
magnitude and steepness of the peak are measured. By using 
multiple level cepstrum peak detection, the likelihood of 
detecting wrong peak is reduced compared to detecting peak 
directly at the finer level of cepstrum. 

B.  Heart Rate Estimation 

In the actual heart rate monitoring applications, the heart 
rate is normally estimated from a time window. In this study, 
we used 10 second window, and collate the ceptrum peaks 
detected within each window of the cepstrogram. The time 
lag values of the peaks are used in calculating heart rate, and 
the magnitude values of the peaks are used to measure the 
confidence of the detection. 

Heart rate is calculated as below: 

A[i]=mean(log(L[i]))           for i=1 to n                      (1) 

B=exp(sum(A[i])                     i=1 to n                         (2) 

R=60*SR/B                                                                   (3) 

where i is the index number of the ceptrum in the 10 second 
cepstrogram window, n is the total number of cepstrum in the 
cepstrogram, and L[i] is the peak lag time measured in 
number of samples. SR is the sampling rate, and the heart rate 
R is measured in beat per minute. 

The confidence of estimation (weight) is calculated as 
below: 

W=sum(M[i])                             for i=1 to n               (4) 

where M[i] is the magnitude of ith cepstrum peak. 

Figure 6 illustrates the heart rate estimation of a 10 minute 
FBG data. The upper subplot shows the heart rate ground 
truth from ECG (in blue) and estimated heart rate from FBG 
(in red). The middle subplot shows the heart rate difference 
between FBG and ECG. The lower subplot shows the weight 
value. For this particular estimation, a threshold of 8.5 is used 
in weight, thus there is no heart rate reading from FBG if the 
weight value is below the threshold.  

 

 
Figure 6. Heart rate estimation from BCG and error against ECG 

VI. EVALUATION 

Evaluation of the proposed method was conducted by 
collecting both BCG and ECG simultaneously for multiple 
subjects with various sleeping postures. The heart rate from 
ECG serves as ground truth for the correctness of the heart 
estimation from BCG. 

A. Data Collection 

In the experiments, a FBG sensor mat with 3 arrays of 
sensors was put on a bed, below a thin bed sheet. Each array 
contains 6 sensors, and the locations of the arrays are 1) 
under the pillow; 2) upper chest; and 3) lower chest. Ten 
subjects with both genders and ages from 20s to 50s 
participated in the data collection. There were 2 sessions for 
each subject: 10 minutes of lying flat posture, and 10 minutes 
of sideway posture. A subject was presumed not to move 
during a session. ECG is recorded along with FBG with time 
synchronized.  

For cepstrum transform, a window of 3 second is used, 
and a cepstrogram is derived by sliding the window by a 
stepsize of 0.04 second. A heart rate reading is estimated 
from every 10 second window of the cepstrogram. The step 
size of the window is 1 second. Heart rate from ECG is 
calculated by detecting the R-peaks and getting the mean R-R 
intervals within the 10-second-window. The heart rate 
reading from FBG sensors were estimated for each sensor 
array independently, i.e. there are totally 3 readings from the 
3 sensor arrays on the bed. 

B. Results 

 The heart rate reading from FBG and ECG are compared 
in beat per minute (BPM). The mean as well as standard 
deviation of the absolute error is calculated for each 10 
minute session. In addition, the acceptance rate of the 
estimation method for each session is measured by taking 
the ratio of valid heart reading against total number of 
estimation windows. 
 

 
Figure 7. Mean and standard deviation of heart rate estimation errors 
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Figure 7 shows the heart rate estimation results of the 3 
sensor arrays, with signal fusion among the 6 sensors in an 
array. Sensor arrays 1 to 3 correspond to the location of the 
sensor array in the bed. For each sensor array, the upper 
subplot shows the mean absolute estimation error for each 
session. The lower subplot shows the standard deviation of 
absolute estimation error. The session sequence number (1-
20) in the plots corresponds to the 10 subjects (each subject 
has 2 sessions); the odd number is for flat lying posture and 
the even number is for sideway lying posture. 
 From the results in Figure 7, it can be seen that the 
average heart rate estimation error is below 1 BPM for all 
the sessions and all the sensor arrays. The standard deviation 
of the error is also mostly below 1.  
 

 
Figure 8. Acceptance rate of heart rate estimation 

 
The acceptance rate of the estimation is shown in Figure 

8. The average acceptance rates for the 3 sensor arrays are: 
0.64, 0.83 and 0.83 respectively. It can be seen that sensor 
array at chest positions in general has higher acceptance rate 
than the head/pillow position. 

In addition, we evaluate how the sensor fusion improves 
the estimation. Table I shows the average results of 20 
sessions for individual sensor in the sensor arrays against 
fused sensor. In the table, only the best sensor (lowest mean 
error) out of the six is shown. From this result, we could see 
that the difference of accuracy between fused sensor and 
non-fused sensor is small. Table II shows the comparison of 
average acceptance rate. It can be seen that the acceptance 
rate improves significantly after fusion.  

TABLE I.  ACCURACY COMPARISON (FUSION VS NO-FUSION) 

Sensor 
Array 

Sensor 
Mean Error 

(BPM) 
Error STD 

(BPM) 

Array 1 
Best 0.4739 0.3815 

Fused 0.4275 0.4503 

Array 2 
Best 0.4264 0.4256 

Fused 0.5291 0.6731 

Array 3 
Best 0.4172 0.4191 

Fused 0.4821 0.5778 

 
 From the experiment, we could see that the proposed 
estimation method can achieve promising accuracy in heart 
rate measurement and robustness against low signal quality. 

Furthermore, the signal fusion improves the estimation 
results particularly the acceptance rate. 

TABLE II.  ACCEPTANCE RATE COMPARISON (FUSION VS NO-FISION) 

Sensor 
Number 

Sensor Array Positions 

Sensor Array1 Sensor Array 2 Sensor Array 3 

1 0.3913 0.5199 0.4415 

2 0.5008 0.5940 0.6126 

3 0.4550 0.6248 0.6015 

4 0.4996 0.6270 0.5984 

5 0.4434 0.5329 0.5687 

6 0.4589 0.4608 0.5307 

Fused 0.6414 0.8320 0.8306 

 

VII. CONCLUSION 

A method of estimating heart rate with promising 
accuracy and robustness from FBG sensor arrays is 
presented. The signal analysis is done in the cepstral domain 
using smoothing and peak detecting techniques. To obtain 
high signal to noise ratio, the cepstrum of signals of multiple 
sensors are fused, as the magnitude of cepstrum reflects the 
quality of the signal. Experimental results validated the 
performance of the proposed method. Our future work 
consists of dynamic sensor selection for fusion and adaptive 
threshold setting for higher acceptance rate.  
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