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Abstract— This paper presents a neural spike processing IC
for simultaneous spike detection, alignment, and transmission
on 8 recording channels with unsupervised closed-loop control.
In this work, spikes are detected according to online estimated
spiking probability maps, which reliably predict the possibility
of spike occurrence. The closed-loop control has been made
possible by estimating firing rates based on alignment results
and turning on/off channels individually and automatically. The
8-channel neural spike processing IC, implemented in a 0.13
µm CMOS process, has a varied power dissipation from 36 µW
to 54.4 µW per channel at a voltage supply of 1.2 V. The chip
also achieves a 380× data rate reduction for the testing in vivo
data, allowing easy integration with wireless data transmission
modules.

I. INTRODUCTION

For neural recording experiments, the idea of neural as-
semblies has always been closely associated with the occur-
rence of spike patterns in convergently-divergently connected
networks, where a sufficient number of neurons are a pre-
requisite to establish casual connectivity. Current recording
system allows simultaneous data acquisition from more than
200 channels [1], generating over 100 Mb data per second
to be processed. Therefore it is important to compress the
data and extract useful features for information decoding. In
addition, given an efficient circuit implementation that can
compress neural data, it allows data bandwidth reduction thus
transceivers with affordable power budget can be integrated.

Many works have been reported on developing efficient
hardware for data compression and information decoding [2],
[3], [4], where the absolute value (Abs) and the nonlinear
energy operator (NEO) are popular spike detectors due to
their computational simplicities. An unresolved challenge of
these methods is how to set the detection threshold to ensure
consistent performance in the presence of many recording
imperfections. To address this difficulty, we have optimized
and implemented a probability-based detector in our system,
which allows us to directly specify the desired precision of
detection instead of thresholding on different neural codes
and having no idea of real-time detection performance [5].

Low power consumption is another primary requirement
for neural recording and signal processing devices. Empirical
studies with in vivo experiments have shown that around
70% of channels contain little spikes, implying a significant
margin for power reduction if “spikeless” channels can be
correctly identified and shut down for a while. In neural
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recording experiments with high channel counts (>64), man-
ual identifying and closing channels require extensive human
interventions thus infeasible. In this work, an unsupervised
closed-loop control has been on-chip implemented, which
can dynamically save power dissipations by turning off
digital signal processing channels selectively for a user-
specified period of time.

The rest of the paper is organized as follows. Section II
describes the system design. Section III presents the chip
prototyping and testing. Section IV concludes the paper.

II. SYSTEM ARCHITECTURE

The system accepts 8-channel time-multiplexed raw data
digitized in 16-bit at a sampling rate of 20 kHz, and outputs
three serialized data streams: the band-pass filtered neural
data, spiking probability maps, and aligned spike packages.
Block diagram of the proposed system is shown in Fig. 1.

A. Pre-processing of Raw Data

First, raw neural data are band-pass filtered to remove low-
frequency components as well as artifacts. The filter can be
programmed externally to select the higher corner frequency
from 5, 6, 7, and 8 kHz, while the lower corner frequency
is fixed at 300 Hz. Throughout the programming range, the
filter has achieved >70 dB stop-band attenuations and <0.03
dB pass-band ripples.

Band-limited neural data are then Hilbert transformed,
which is realized by cascading a 16-point fast Fourier
transform (FFT) and an inverse-FFT (IFFT) with an inter-
mediate rotation of the FFT outputs. We chose to implement
Hilbert transform in pipelined FFT-IFFT structure instead of
time-domain convolution to facilitate multichannel hardware
sharing. Simulation results confirmed that a 16-point Hilbert
transform ensures a >97% precision in terms of the his-
togram in the next step. Finally, Hilbert transformed neural
data are normalized to their estimated variances. This is to
represent neural data in a more compact form to facilitate
data distribution approximation.

B. EC-PC Parameter Regression

We have previously reported an unsupervised and adap-
tive spike detection algorithm in [5], which proves that in
neural data probability distributions, in vivo noise forms an
exponential component (EC) and extracellular spikes form
a polynomial component (PC). By estimating both EC and
PC, the algorithm can quantitatively predict the occurrence
of spikes based on a spiking probability map.
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Fig. 1. Block diagram of the proposed neural spike processing system.
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Fig. 2. Flowchart of EC-PC parameter regression engine and illustration
of the regression algorithm.

In this work, the distribution of each channel is approx-
imated by a histogram, consisting of 4×14-bit bins for EC
and 32×10-bit bins for PC, as shown in Fig. 2. The contents
of histograms are updated adaptively as normalized neural
data arrive. An EC-PC regression engine is switched to
interface with 8-channel histograms sequentially for param-
eter estimation. Ideally, the parameters of EC and PC are
trained by two regressions in the linear-log scale and log-log
scale, respectively, where the log-log scale training consumes
excessive circuit power due to the logarithmic arithmetics on
the 32 PC bins. In this implementation, we have improved the
regression scheme by introducing a simplified model which
trains PC as a horizontal line in the linear-log scale, as shown
in Fig. 2. Simulation results showed that the simplified model
can save 46% circuit area and 25% power consumption
compared with the dedicated one.

A finite state machine (FSM) has been implemented to
automatically switch the regression engine between the ded-
icated and the simplified PC models based on the observation
that inactive neurons fire only 1-10 spikes per second [6],
resulting in small PC and making EC dominant. In Fig. 3,
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Fig. 3. Top left: trained EC parameters. Bottom left: synthesized neural
data with an abrupt firing rate reduction. Right: zoom in of neural data and
corresponding spiking probability map.

the trained EC parameter served as a reliable indicator of the
spiking activity by tracking its variations. As the last step in
the FSM, a spiking probability map is generated from the
trained EC and PC, which represents the chance of the spike
presence at a given time slot. For example, a 50% probability
score indicates a 50% possibility of a data point being part
of a spike, as illustrated in the zoom-in region of Fig. 3.

C. Spike Detection and Alignment

We propose to combine the EC-PC idea with existing
detectors, e.g., Abs, where spiking probability maps can be
directly thresholded to identify spikes. The operations of
the spike detection and alignment in our implementation are
illustrated in Fig. 4, and summarized as follows.

1) Pre-load: A buffer with a capacity of 20 data samples
buffers the neural data stream. Once full, the buffer will be
updated adaptively until a probability score exceeds the user-
specified threshold.

2) Post-load: The Pre-load buffer stops working, and
another buffer is initiated to hold the next 50 data samples.
During the Post-load phase, the peak with the largest abso-
lute value in the 50 samples is determined.

3) Comp-load (optional): The peak obtained in Post-load
is supposed to be the centre of a 40-point spike segment. If
samples on the right of the peak in the Post-load buffer are
less than 20, the Post-load buffer will left-shift to fill in new
data and compensate for the centre point deviation.
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Fig. 5. Format of spike packages and configuration of 8-channel spike
transmission module. Each spike segment consist of channel ID, timestamp,
and 40-point spike waveform, requiring 516 bits in total.

Due to the compulsory filling of the 70-point spike buffers
in total during alignment, the system has a built-in refractory
time of 3.5 ms. The Post-load buffer can hold 2.5 ms neural
data, which to a large extent avoids misalignment to local
maximums instead of real peaks. After alignment, spikes
from 8 channels are packaged in frames along with channel
IDs and timestamps, and transmitted off-chip through a
pair of bit streams, as shown in Fig. 5. We assume that
the 8-channel system can record activities of 20 neurons
with an average firing rate of 20 Hz, corresponding to
a net data rate of 20×20×516 = 2.06 Mbps. The spike
transmission interface has been implemented as a FSM with
intermediate buffers and achieved a highest throughput of 5
Mbps, satisfying the bandwidth requirement.

D. Firing Rate Estimation and Closed-Loop Control

In this work, the closed-loop control structures enable
automatic and selective activation/deactivation of signal pro-
cessing channels to save power consumption. As shown
in Fig. 6, we have used firing rate as the criterion for
closing channels, which is estimated by counting the number
of spikes appearing in a time window. Both the firing
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Fig. 6. Structure of single channel closed-loop control.
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Fig. 7. Die photo of designed chip and performance summary.

rate threshold and the length of the time window are pro-
grammable. When channels are labeled as “spikeless”, their
histograms, detection, and alignment blocks are shut down
for a user-specified period of time through clock gating.
The pre-processing blocks (band-pass filtering and Hilbert
transform) are not influenced by the closed-loop control due
to their time-multiplexed hardware sharing configuration.

III. PROTOTYPING AND MEASUREMENTS

A. Chip Implementation

The proposed system has been fabricated in a CMOS 0.13
µm process and occupies 0.76 × 5.28 mm2 as shown in
Fig. 7, where measured circuit performances are also given.
The power consumption of single channel varies from 36
µW when being deactivated and only the pre-processing
is working, to a peak 54.4 µW when the functionalities
are fully activated, allowing a dynamic and adaptive power
saving. The peak power density is 108.45 µW/mm2, well
below the 277 µW/mm2 required for neural implants [7].

B. Benchtop Testing

We have conducted benchtop testings of the proposed chip
on a customized prototyping board with neural data recorded
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is 26 Hz.

from in vivo experiments, as shown in Fig. 8. During the
testing, the closed-loop control has been enabled with a 6.7-
sec firing rate estimation window and a 13.3-sec resting
period, which are indicated as Active and Inactive in the
figure. The firing rate threshold to turn off channels is set at
1 Hz. The result has clearly demonstrated the chip’s ability
of performing multichannel closed-loop control with single-
channel resolution.

The chip has achieved a 380× data rate reduction for the
given dataset, from 16-b×40 kHz×8-ch = 5.12 Mbps to 26
spike/s×516-b/spike = 13.416 kbps, as illustrated in Fig. 9.
With the closed-loop control enabled, the data rate reduction
can be further improved at acceptable information loss.

IV. CONCLUSION

We have reported a 8-channel neural spike processing
IC to perform simultaneous spike detection, alignment, and

transmission, featuring an online and unsupervised closed-
loop operation. By adapting to neuronal firing activities and
reallocating computational resources efficiently, the proposed
system can find wide applications in robust neural recording
experiments where power consumption is a major concern.
The provided substantial bandwidth reduction is also favor-
able for wireless biomedical signal processing applications.
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