
  

 

Abstract—RNA-seq enables quantification of the human 

transcriptome. Estimation of gene expression is a 

fundamental issue in the analysis of RNA-seq data. 

However, there is an inherent ambiguity in 

distinguishing between genes with very low expression 

and experimental or transcriptional noise. We conducted 

an exploratory investigation of some factors that may 

affect gene expression calls. We observed that the 

distribution of reads that map to exonic, intronic, and 

intergenic regions are distinct. These distributions may 

provide useful insights into the behavior of gene 

expression noise. Moreover, we observed that these 

distributions are qualitatively similar between two 

sequence mapping algorithms. Finally, we examined the 

relationship between gene length and gene expression 

calls, and observed that they are correlated. This 

preliminary investigation is important for RNA-seq gene 

expression analysis because it may lead to more effective 

algorithms for distinguishing between true gene 

expression and experimental or transcriptional noise.  

I. INTRODUCTION 

RNA-seq has greatly improved the dynamic range of 
gene expression quantification, enabling the detection of 
very low and very high-expressed genes. However, accurate 
quantification of RNA-seq gene expression remains a 
challenge [1]. The random nature of RNA-seq (i.e., due to 
the random sampling of sequences) and the presence of 
experimental and/or transcriptional noise leads to an inherent 
ambiguity in distinguishing between noise and low-
expression genes, i.e., “calling” gene expression [2, 3]. The 
presence of experimental noise complicates the detection of 
changes in low-expression genes, which may potentially be 
important disease biomarkers. Thus, we examined methods 
for identifying true gene expression calls and investigated 
factors in RNA-seq data analysis pipelines that may affect 
the detection of low-expression genes.  
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A simple method to distinguish between true gene 
expression calls and experimental noise involves 
thresholding on the total number of reads mapped to each 
gene. Genes with a total number of reads that is smaller than 
the threshold are deemed to be not expressed, and any reads 
that appear to originate from the gene are believed to be 
experimental noise. However, determining the appropriate 
threshold is challenging. Wagner et al. modeled gene 
expression distributions as a mixture of negative binomial 
and exponential distributions to represent functional 
expression and noise, respectively [4]. They observed that 
classifying expression levels with such a mixture model 
resulted in an empirical threshold of approximately 1 RPKM 
(reads per kilobase per million mapped reads [5]), which was 
consistent across a variety of RNA-seq datasets. Moreover, 
this result was in agreement with the results of a different 
approach by Hebenstreit et al. [2]. Hebenstreit et al. sought 
to differentiate between low and high expression genes by 
modeling the distribution of reads mapping to intronic and 
intergenic regions. Using these non-exonic distributions to 
determine a threshold, and using PCR to verify low-
expression genes, they observed that these low-expression 
genes could likely be attributed to “leaky”, but non-
functional expression. Although these studies have 
established techniques for identifying true gene expression 
calls, the impact of such methods on RNA-seq applications is 
unknown. Moreover, it is unclear how RNA-seq data 
analysis pipelines affect gene expression calls.  

We conducted a preliminary investigation of factors 
affecting RNA-seq gene expression calls. Using a method 
similar to that described by Hebenstreit et al., we empirically 
estimated the distribution of reads that mapped to exonic, 
intronic, and intergenic regions of the human genome, and 
observed distinct differences among these distributions 
(Figure 1). We then compared how these distributions 
changed when using different sequence mapping algorithms. 
Finally, we examined properties of genes such as length and 
number of exons, and observed that these properties are 
different in genes with a tendency to be expressed at levels 
indistinguishable from noise. A comprehensive investigation 
of these factors may be important for designing RNA-seq 
data analysis pipelines, improving the accuracy of gene 
expression estimation, and understanding transcriptional 
activity.  

II. METHODS 

A. RNA-Seq Data and Sequence Mapping 

We used an RNA-seq sample containing the Stratagene 
Universal Human Reference RNA (UHRR), sequenced using 
Illumina technology. The sample was sequenced to a depth 
of approximately 4-5 million paired-end reads with read 
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length of 100 base pairs. We used BWA and TopHat to map 
sequences to the human genome (hg19) [6, 7]. We used a 
two-step alignment procedure for BWA. First, we mapped 
sequences to the AceView transcriptome [8], then we 
mapped remaining sequences to the human genome. Both 
mapping results (i.e., AceView transcriptome and human 
genome) were combined to produce the final mapping results 
[9]. For TopHat, we aligned all reads directly to the human 
genome while using the AceView transcriptome to guide the 
mapping of reads spanning exon junctions. Both RNA-seq 
pipelines produced BAM-formatted alignment files, which 
were used for subsequent gene expression quantification.  

B. Quantification of Gene Expression  

We used HTSeq to quantify gene expression as the 
number of reads that mapped to the exons of each gene in the 
AceView annotation [8, 10]. First, using SAMTools, we 
sorted the BAM-formatted alignment files by sequence read 
names [11]. Second, we used HTSeq with the GTF-
formatted (i.e., General Transfer Format) AceView 
annotation and a sorted BAM file as input to count all reads 
that map completely within the exonic regions of genes. That 
is, a read was assigned to a gene only if the entire read was 
mapped within the exonic regions of the gene. This counting 
criterion is called “intersection-strict” in HTSeq. Reads that 
were only partially mapped to an exon, with the remainder 
mapping to intronic or intergenic regions, were not assigned 
to the gene. The assumption for this criterion is that reads 
partially mapped to introns or intergenic regions were more 
likely to be noise. Finally, we normalized the read counts for 
each gene using reads per kilobase per million mapped reads 
(RPKM) by estimating gene length as the sum of the lengths 
of all of the gene’s exons [5].  

C. Quantification of “Noise” Expression 

We quantified RNA-seq noise using a method similar to 
that of Hebenstreit et al. [2]. Specifically, we used HTSeq to 
quantify reads mapping to intronic and intergenic regions in 
a manner similar to that of exonic regions. In order to 
achieve this, we created separate GTF-formatted annotations 
for introns and intergenic regions. The intron annotation file 

contains the start and end coordinates of all unique introns 
for each gene. The intergenic annotation file contains the 
start and end coordinates of all intergenic regions. In contrast 
to the “intersection-strict” HTSeq option used for exons, we 
used “intersection-nonempty” for both intron and intergenic 
counts. This criterion assigns a read to a gene’s intronic 
region if that read partially or completely maps to one of the 
gene’s introns. Similarly, it assigns a read to an intergenic 
region if that read partially or completely maps to the 
intergenic region. We normalized intronic read counts using 
RPKM by summing the number counts that mapped to all 
introns of each gene, then estimating intronic length as the 
sum of the lengths of all of the gene’s introns. Intergenic 
RPKM was similarly computed, except that each intergenic 
feature contains only one contiguous region.  

D. Threshold Estimation for Gene Expression Calls 

We estimated the threshold for gene expression calls as 
the 90% quantile of intergenic RPKM values [2]. That is, the 
threshold is defined such that 10% of all intergenic regions 
have “noisy” RPKM expression values at or above the 
threshold; and the remaining 90% of intergenic regions have 
RPKM expression below the threshold. We then used this 
threshold as the criterion for detecting true gene expression 
signals vs. noisy signals. All genes with RPKM values below 
the threshold were deemed to be indistinguishable from 
noise.  

III. RESULTS AND DISCUSSION 

A. Distributions of Exonic, Intronic, and Intergenic 

Mapping are Distinct 

The AceView human transcriptome contains over 55,000 
genes, including many experimental sequences. Thus, it is 
less conservative compared to transcriptome databases such 
as RefSeq [12]. Among these genes, over 38,000 contain 
multiple exons, i.e., these genes include intronic regions. 
Moreover, due to the overlap of some genes, only 
approximately 40,000 intergenic regions exist. Table 1 lists 
the total number of exonic, intronic, and intergenic features, 
along with mapping statistics for the BWA and TopHat 

Figure 1. The distributions of RPKM-normalized read counts in the exon, intron, and intergenic regions produce distinct distributions. The properties 

of these distributions may be used to infer the level of experimental or transcriptional noise in an RNA-seq experiment.  
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mapping pipelines. Roughly half of all exonic, intronic, and 
intergenic features map to at least one read (i.e., RPKM > 0).  

There is a clear difference among the distributions of 
reads mapping to exons, introns, and intergenic regions. 
Figure 2 illustrates the three distributions for the BWA 
(Figure 2A) and TopHat (Figure 2B) mapping pipelines. As 
expected, reads are more likely to map to exons (black 
distribution) than to introns (red) or intergenic regions 
(blue). Moreover, reads are more likely to map to introns 
than to intergenic regions. That is, the distribution of intronic 
RPKM is slightly shifted in the positive direction compared 
to that of intergenic regions. This may be explained by gene 
splice variants in the intronic regions that have yet to be 
discovered.  

We do not observe considerable qualitative differences 
between the BWA and TopHat mapping pipelines in terms of 
exon, intron, and intergenic region RPKM distributions. This 
may be due to the similarity of the underlying sequence 
mapping algorithm in both aligners, i.e., a Burrows-Wheeler 
transform-based algorithm. However, a more quantitative 
and comprehensive analysis is necessary to determine if the 
choice of analysis pipeline affects RNA-seq expression 
distributions.   

B. Mapping Distributions May Be Informative for Gene 

Expression Calls 

A convenient property of the decomposition into exon, 
intron, and intergenic region RPKM distributions is that we 
can estimate a “confidence” for true gene expression given a 
specific expression level. For example, we can observe that 
about 3000 genes are expressed with log2 RPKM of 1. In 
contrast, there are approximately 800 genes with intronic 
regions expressed at log2 RPKM of 1, and 700 intergenic 
regions with the same expression level. Assuming that reads 
mapping to intronic or intergenic regions truly represent 
experimental or transcriptional noise (i.e., we assume that 
our knowledge of the gene annotation is complete), we can 
estimate a “confidence” of 67% for true gene expression at a 
level of 1 RPKM since 3000/4500 features are expressed at a 
level of 1 RPKM. This confidence may be computed for all 
RPKM values.  

Equipped with these distributions, we can find a suitable 
threshold for gene expression calls based on noise tolerance. 
For example, if we want a confidence of at least 50% for 
gene expression calls, we should choose a threshold such 
that the frequency of both the intergenic and intronic 

distributions is equal to that of the exonic distribution. 
Interestingly, this results in a similar threshold to that of the 
ad hoc method introduced by Hebenstreit et al. [2]. They 
used a 90% quantile of the intergenic distribution as the 
threshold, depicted by the dashed vertical line in Figure 2.  

C. Properties of Genes Expressed Above and Below the 

Detection Threshold 

We further characterize the nature of gene expression in 
the presence of experimental or transcriptional noise by 
examining gene properties such as length and number of 
exons that may be correlated with the threshold. Genes 
expressed above the detection threshold tend to be longer 
than genes expressed below the threshold (Figure 3). 
Although expression values have been normalized by gene 
length (i.e., using RPKM), this observed characteristic is 
likely due to the fact that short sequence reads are more 
likely to map to longer genes. Similarly, genes expressed 
above the threshold tend to contain a larger number of exons 
(Figure 4).  

Figure 2. Distribution of true gene expression (i.e., exonic signal, 

black), intronic noise (red), and intergenic noise (blue) for (A) the 

BWA mapping pipeline and (B) the TopHat mapping pipeline. The 

dashed vertical line indicates the true gene expression calling 

threshold, determined as the 90% quantile of intergenic noise.  

B 

A TABLE 1. MAPPING STATISTICS FOR BWA AND TOPHAT PIPELINES 

BWA Mapping 

  RPKM = 0 RPKM > 0 Total Features 

Gene (Exon) 28,499 27,375 55,874 
Intron 17,043 21,535 38,578 

Intergenic 18,030 22,456 40,486 

    TopHat Mapping 

  RPKM = 0 RPKM > 0 Total Features 

Gene (Exon) 29,666 26,208 55,874 
Intron 17,184 21,394 38,578 

Intergenic 18,313 22,173 40,486 
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D.  Limitations and Future Investigations 

Although the experiments we conducted are limited, we 
observed some interesting characteristics of exonic, intronic, 
and intergenic mapping statistics, as well as correlations 
between expression “noise” and gene length. The results of 
this investigation may serve to guide future investigations. 
Specifically, future experiments may address the following 
limitations of this study. First, using only two different 
mapping pipelines, BWA and TopHat, we observed similar 
results. However, a comprehensive analysis of RNA-seq 
pipelines, including mapping, quantification, and 
normalization components should be examined to determine 
the effect of analysis pipeline on gene expression calls. 
Second, the specific choice of human genome annotation can 
largely impact downstream RNA-seq gene expression 
estimation [13]. Thus, a comprehensive analysis of the effect 
of genome annotation on the distributions of exonic, intronic, 
and intergenic region mapping is warranted. Third, we used 
only a single sample of one dataset in this study. Although 
Wagner et al. observed similar results across several 
datasets, a comprehensive analysis of various datasets from 
different sequencing platforms and with varying read depths 
may reveal other important factors for thresholding gene 
expression calls [4].  

IV. CONCLUSION 

We observed that the distributions of reads that map to 
exons, introns, and intergenic regions are distinct. Moreover, 
we can use these distributions to determine an approximate 
threshold for separating experimental or transcriptional noise 
from true gene expression. Such thresholding depends on 
assumptions about the genomic annotation. That is, we must 
assume that our knowledge of the genomic annotation is 
complete and that reads mapping to introns or intergenic 
regions are, in fact, the result of noise. Furthermore, we 
observed that two mapping pipelines, BWA and TopHat, 
produce very similar gene expression calling results. 
However, these pipelines are based on similar underlying 
algorithms. Finally, we observed that gene properties such as 
length and number of exons are correlated with the gene 
expression calling threshold. Overall, these preliminary 
results, and future investigations into gene expression noise, 
may be important in guiding us in the design of better RNA-
seq experiments and data analysis pipelines to improve the 
accuracy of gene expression estimation. 

REFERENCES 

[1] Z. Wang, M. Gerstein, and M. Snyder, "RNA-Seq: a revolutionary 

tool for transcriptomics," Nature Reviews Genetics, vol. 10, pp. 57-

63, 2009. 

[2] D. Hebenstreit, M. Fang, M. Gu, V. Charoensawan, A. van 

Oudenaarden, and S. A. Teichmann, "RNA sequencing reveals two 

major classes of gene expression levels in metazoan cells," Molecular 

systems biology, vol. 7, 2011. 

[3] D. Hebenstreit, "Are gene loops the cause of transcriptional noise?," 

Trends in Genetics, vol. 29, pp. 333-338, 2013. 

[4] G. P. Wagner, K. Kin, and V. J. Lynch, "A model based criterion for 

gene expression calls using RNA-seq data," Theory in Biosciences, 

vol. 132, pp. 159-164, 2013. 

[5] A. Mortazavi, B. A. Williams, K. McCue, L. Schaeffer, and B. Wold, 

"Mapping and quantifying mammalian transcriptomes by RNA-Seq," 

Nature methods, vol. 5, pp. 621-628, 2008. 

[6] H. Li and R. Durbin, "Fast and accurate short read alignment with 

Burrows–Wheeler transform," Bioinformatics, vol. 25, pp. 1754-1760, 

2009. 

[7] D. Kim, G. Pertea, C. Trapnell, H. Pimentel, R. Kelley, and S. L. 

Salzberg, "TopHat2: accurate alignment of transcriptomes in the 

presence of insertions, deletions and gene fusions," Genome Biol, vol. 

14, p. R36, 2013. 

[8] D. Thierry-Mieg and J. Thierry-Mieg, "AceView: a comprehensive 

cDNA-supported gene and transcripts," Genome biology, vol. 7, p. 

S12, 2006. 

[9] J. H. Phan, P.-Y. Wu, and M. D. Wang, "Improving the flexibility of 

RNA-Seq data analysis pipelines," in Genomic Signal Processing and 

Statistics,(GENSIPS), 2012 IEEE International Workshop on, 2012, 

pp. 70-73. 

[10] S. Anders. (2010). HTSeq: Analysing high-throughput sequencing 

data with Python. Available: http://www-

huber.embl.de/users/anders/HTSeq/ 

[11] H. Li, B. Handsaker, A. Wysoker, T. Fennell, J. Ruan, N. Homer, G. 

Marth, G. Abecasis, and R. Durbin, "The sequence alignment/map 

format and SAMtools," Bioinformatics, vol. 25, pp. 2078-2079, 2009. 

[12] K. D. Pruitt, T. Tatusova, and D. R. Maglott, "NCBI reference 

sequences (RefSeq): a curated non-redundant sequence database of 

genomes, transcripts and proteins," Nucleic acids research, vol. 35, 

pp. D61-D65, 2007. 

[13] P.-Y. Wu, J. H. Phan, and M. D. Wang, "Assessing the impact of 

human genome annotation choice on RNA-seq expression estimates," 

BMC Bioinformatics, vol. 14, p. S8, 2013. 

 

Figure 3. Distribution of gene length in expressed (green) and non-

expressed (magenta) genes. Expressed genes tend to be longer.  

Figure 4. Distribution of exon count in expressed (green) and non-

expressed (magenta) genes. Expressed genes tend to have more exons.  
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