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Abstract— Gene regulatory networks depict the interactions
between genes, proteins, and other components of the cell. These
interactions often are stochastic that can influence behavior of
the cells. Discrete Chemical Master Equation (dCME) provides
a general framework for understanding the stochastic nature
of these networks. However solving dCME is challenging due
to the enormous state space, one effective approach is to
study the behavior of individual modules of the stochastic
network. Here we used the finite buffer dCME method and
directly calculated the exact steady state probability landscape
for the two stochastic networks of Single Input and Coupled
Toggle Switch Modules. The first example is a switch network
consisting of three genes, and the second example is a double
switching network consisting of four coupled genes. Our results
show complex switching behavior of these networks can be
quantified.

I. INTRODUCTION
Gene regulatory circuits control essential cellular pro-

cesses including cellular fate. A well known example is
stochastic switch between the lysogenic state and the lytic
state in phage lambda [1]. Another example is the transition
into and from competence in the Bacillus subtilis [2].

Studying stochastic gene regulatory networks is chal-
lenging, as reactions often involve low copy number of
molecules and may have large separation in time scale.
The discrete Chemical Master Equation (dCME) provides
a general framework for modeling of stochastic gene net-
works. However solution of the dCME remains difficult, as
analytical solution is generally not possible. Computational
methods, on the other hand, encounter the problem of
enormous state space. For example for the system with 15
molecular species, each of which has 10 molecules at most,
the state space size is 1015, and correspondingly the system
of 1015 ordinary differential equations has to be solved.
Therefore it is necessary to truncate the state space with
the hope of maintaining sufficient accuracy. The finite state
projection provides a method for directly solving the time
evolution, however it cannot be used to calculate steady
state distribution because of the introduction of the absorbing
state, whose probability increases with time [3].
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Here we apply the previously described Finite Buffer
method, which allows efficiently enumerating state space
according to predefined error tolerance, to directly calculate
the steady state solution of dCME for two modules of gene
regulatory networks. The first example is the single input
module, consisting of three genes in which the product of
the first gene inhibits the expression of the two other genes.
At the same time the inhibiting gene is activated by these
two other genes it inhibits. Another example is that of two
coupled toggle switch. The four genes in the system are
connected pairwise, so protein product can be produced when
corresponding pairs of genes are inhibited. The first model
consists of 7 molecular species, and the second system 12
species. Both systems are general network motifs widely
found in biological systems. Our results show that the exact
steady state probability landscape of two these networks can
be obtained using Finite Buffer method.

II. MODELS AND METHODS

A. Discrete Chemical Master Equation

Consider a well-mixed biochemical system with constant
volume and temperature. Assume this system contains n
molecular species Xi which participate in m reactions Rk

with reaction rate constants rk. The microstate of the system
at time t is represented by the non-negative integer column
vector of copy numbers of each molecular species: x(t) =
(x1(t), x2(t), · · · , xn(t))T , where T denotes the transpose.
An arbitrary reaction Rk (k = 1, 2, · · · ,m) with intrinsic
rate rk takes the general form:

c1kX1 + · · ·+ cnkXn
rk→ c′1kX1 + · · ·+ c′nkXn,

which brings the system from a microstate xi to xj . The
difference between xi and xj is the stoichiometry vector sk
of the reaction Rk: sk = xj − xi = (s1k, s2k, · · · , snk)T =
(c′1k − c1k, c

′
2k − c2k, · · · , c′nk − cnk)

T ∈ Zn. The sto-
ichiometry matrix S for the reaction network is defined
as: S = (s1, s2, · · · , sm) ∈ Zn×m, where each column
represents a single reaction. The rate Ak(xi,xj) of reaction
Rk that transforms microstate from xi to xj is determined by
the intrinsic rate constant rk and the combination number of
relevant reactants in the current microstate xi: Ak(xi,xj) =

Ak(xi) = rk
n∏

l=1

(
xl
clk

)
.

All possible microstates that the system can visit from
a given initial condition over time t form the state space:
S = {x(t)|x(0), t ∈ (0, θ)}. We denote the probability
of each microstate at time t as p(x(t)), and the proba-
bility distribution at time t over the whole state space as
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p(t) = {(p(x(t))|x(t) ∈ S)}. And, p(t) is also called the
probability landscape of the network [1].

Discrete chemical master equation (dCME) is a set of lin-
ear ordinary differential equations describing the probability
changes of each discrete microstate of the system over time.
The dCME of an arbitrary microstate x = x(t) is:

dp(x)

dt
=
∑
x′

[A(x′,x)p(x′)−A(x,x′)p(x)] (1)

where x′ 6= x.
The Eqn. (1) can be further represented in matrix form:

dp(t)

dt
= ATp(t).

For any xi, xj ∈ S , where A ∈ R|S|×|S| is called
the transition rate matrix formed by the collection of all
A(xi,xj):

A = ‖A(xi,xj)‖ =


−

∑
x′∈S,
x′ 6=xi

Ak(xi,x
′), xi = xj ,

Ak(xi,xj), xi 6= xj .

B. Finite Buffer State Space Enumeration Method with Mul-
tiple Buffers

We have developed an algorithm previously to optimally
enumerate state space of arbitrary biological network, and
solve the steady state probability landscape of the dCME,
when an initial state is given [1], [4]. When the network is
an open system, i.e., containing synthesis and degradation
reactions, one finite buffer of virtual molecules is assigned
to the network to limit the total copy number of species that
can be synthesized.

However, to more efficiently enumerate the state space our
finite buffer method can be further improved by using multi-
ple buffers and empirically estimating the error of state space
truncation for each individual buffer. This novel method has
been developed in [5]. Briefly, we can partition reactions into
different independent reaction groups (IRG), each of which
contains reactions sharing the common species participating
in synthesis and degradation type processes. We then assign
different buffers to each different IRG. We can estimate the
error of the dCME solution due to the finite buffer size by
calculating the total probability of boundary states, which
are microstates with at least one buffer depleted. Therefore,
each IRG can be bounded by a separate buffer, and the
minimal buffer size can be determined by comparing the
error estimate of the buffer to the desired error tolerance.
If the estimated error is larger that the error tolerance, the
buffer size needs to be increased. Otherwise, the buffer size
can be reduced to save memory space.

The error of each buffer is related to the ratio between
synthesis and degradation reaction rate constants in the
corresponding IRG. When the ratio is larger, the IRG has
larger error with the same buffer size, or equivalently, a
larger buffer is required for the IRG to achieve the same
error. We develop an approach to estimate the size of each
buffer a priori as 2 × s/d, where s and d are the synthesis

and degradation rate constants in the IRG. We then iteratively
adjust the buffer size until the pre-defined error tolerance is
reached.

In the Results section, we study two important gene
regulatory networks using this improved finite buffer method.
We show the estimation of buffer sizes based on synthe-
sis/degradation ratio in each IRG, as well as the steady state
probability landscapes of the dCME.

III. RESULTS

A. Single Input Network module

Single input network motif can be found in many biolog-
ical networks, in which multiple genes are regulated by the
expression of a single transcription factor [7]. Here we study
a simple network of three genes with two of them controlled
by a master gene (Fig. 1). The molecular species, reactions
and their rate constants are shown below:

R1 : A+GeneB
k1→ BGeneB,

R2 : BGeneB
k2→ A+GeneB,

R3 : A+GeneC
k3→ BGeneC,

R4 : BGeneC
k4→ A+GeneC,

R5 : GeneB +GeneC
k5→ A+GeneB +GeneC,

R6 : A
k6→ ∅,

R7 : GeneB
k7→ B +GeneB,

R8 : B
k8→ ∅,

R9 : GeneC
k9→ C +GeneC,

R10 : C
k10→ ∅.

This model consists of three genes GeneA, GeneB, and
GeneC, expressing protein products A, B and C, re-
spectively. Protein monomer A can bind to promoter sites
of GeneB and GeneC to form protein-DNA complexes
BGeneB and BGeneC, respectively, to turn off the expres-
sion of the other gene. At the same time, both genes GeneB
and GeneC activate the expression of GeneA, so protein
A can be synthesized if the binding sites of both GeneB
and GeneC are not occupied. We take the parameters as:
k1 = k3 = 0.005/s, k2 = k4 = 0.1/s, k5 = 20/s,
k7 = 10/s, k9 = 11/s, k6 = k8 = k10 = 1/s.

GeneAGeneB GeneC

AB C

Fig. 1. Single Input Network module

Three IRGs are identified for this model as RIRG
1 =

{R1, · · · , R6}, RIRG
2 = {R7, R8}, and RIRG

3 = {R9, R10}.
Each is assigned a separate buffer.

We predefine the error tolerance for all of the buffers
to be 1 × 10−5. When estimating the error for RIRG

1 , we
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Fig. 2. Steady state probability landscape for proteins B and C
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Fig. 3. Steady state probability landscape for proteins A and B+C

consider the extreme cases in which protein A is synthesized
at the maximum rate, but degraded at the minimum rate.
This corresponds to the case in which GeneB and GeneC
are constantly turned off. We pre-estimate the buffer size of
RIRG

1 as 2 × k5/k6 = 40. We further reduce the error by
increasing the buffer size by 1 at a time, if the boundary
probability is larger than the tolerance 1× 10−5. Otherwise,
if the boundary probability is smaller than the tolerance, we
decrease the buffer size by 1 at a time to achieve further
saves on memory space. We obtain the final minimal buffer
size for RIRG

1 to be 44. Similarly we obtain the minimal
buffer sizes for the other two IRGs RIRG

2 and RIRG
3 to be

27 and 28, respectively. The enumerated state space consists
of 142, 912 states. The sparse transition rate matrix contains
a total of 1, 016, 135 non-zero elements.

For this switch network, the steady state probability was
computed and shown on Fig. 2, 3, with errors for each
IRG as: RIRG

1 : 8.1739 × 10−7, RIRG
2 : 3.3932 × 10−6

and RIRG
3 : 6.4288 × 10−6, which are all smaller than the

predefined error tolerance 1× 10−5.
The computed steady state probability landscape of species

B and C is plotted on Fig. 2, in which the switch between
proteins B and C can be seen. When GeneB (GeneC)
is bound, protein A synthesis is suppressed, which leads
to the reduction of its concentration. The probability of
GeneC (GeneB) to be repressed decreases, and the number
of molecules of protein C (B) increases. Fig. 3 shows the

expression level of GeneA versus the total expression level
of GeneB and GeneC. Oscillating behaviors can be inferred
of this network. Probability of the expression of GeneB and
GeneC is high, when the concentration of the protein A is
low. When both genes GeneB and GeneC are unbound, the
concentration of the protein A increases. We can therefore
infer the following scenario: the increase of the protein A
leads to the increase of the probability of GeneB or GeneC
to be bound, but once one of them is inhibited, it leads to
the immediate reduction of the amount of molecules of the
protein A.

B. Two coupled toggle switch network

Toggle switches are an important class of biological net-
works playing critical roles in many biological processes,
such as cell fate determination [4]. Here we studied the
behavior of a biological network consisting of two coupled
toggle switches (Fig. 4). The molecular species, reactions
and their rate constants are shown below:

R1 : C +GeneA
k1→ BGeneA,

R2 : BGeneA
k2→ C +GeneA,

R3 : D +GeneB
k3→ BGeneB,

R4 : BGeneB
k4→ D +GeneB,

R5 : A+GeneC
k5→ BGeneC,

R6 : BGeneC
k6→ A+GeneC,

R7 : B +GeneD
k7→ BGeneD,

R8 : BGeneD
k8→ B +GeneD,

R9 : GeneD +GeneA
k9→ A+GeneD +GeneA,

R10 : A
k10→ ∅,

R11 : GeneB +GeneA
k11→ B +GeneB +GeneA,

R12 : B
k12→ ∅,

R13 : GeneB +GeneC
k13→ C +GeneB +GeneC,

R14 : C
k14→ ∅,

R15 : GeneC +GeneD
k15→ D +GeneC +GeneD,

R16 : D
k16→ ∅.

This model consists of four genes GeneA, GeneB, GeneC,
and GeneD, expressing protein products A, B, C, and D,
respectively, in the way that GeneA and GeneC, GeneB
and GeneD repress each other pairwise. Namely GeneA
(GeneB) product monomer A (B) turns off the expression
of GeneC (GeneD), when forming protein-DNA complex
BGeneC (BGeneD), analogously GeneC (GeneD) prod-
uct monomer C (D) turns off the expression of GeneA
(GeneB), when forming protein-DNA complex BGeneA
(BGeneB). In the same time protein A can be synthesized,
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if the binding sites of both GeneA and GeneD are not
occupied, protein B can be synthesized if the binding sites
of both GeneA and GeneB are not occupied, protein C
can be synthesized if the binding sites of both GeneC and
GeneB are not occupied, protein D can be synthesized
if the binding sites of both GeneD and GeneA are not
occupied. We take the parameters as: k1 = k3 = k5 =
k7 = 0.006/s, k2 = k4 = k6 = 0.1/s, k9 = k13 = 3/s,
k11 = k15 = 4/s, k10 = k12 = k14 = k16 = 1/s. Four IRGs

GeneA GeneB

GeneCGeneD

A

B

C

D

Fig. 4. Two coupled toggle switch network

A

0

5

10

15

C

0

5

10

15

P
ro

b
a
b
ility

0.00

0.01

0.02

0.03

0.04

0.05

Fig. 5. Steady state probability landscape for proteins A and C
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Fig. 6. Steady state probability landscape for proteins B and D

are identified for this model: RIRG
1 = {R5, R6, R9, R10},

RIRG
2 = {R7, R8, R11, R12}, RIRG

3 = {R1, R2, R13, R14},
RIRG

4 = {R3, R4, R15, R16}, and each is assigned a separate
buffer.

We predefine the error threshold for all of the buffers to
be equal 1×10−5. When estimating the error for RIRG

1 , we
consider the extreme cases in which A is synthesized at the

maximum rate, but degraded at the minimum rate. This cor-
responds to the GeneB is constantly turned off. Following
the same approach as in the first example, we determine
the minimal buffer sizes that can satisfy the predefined
error tolerance ε = 10−5 for all four IRGs RIRG

1 , RIRG
2 ,

RIRG
3 , and RIRG

4 to be 15, 17, 15, and 17, respectively. The
enumerated state space consists of 1, 177, 225 states. The
sparse transition rate matrix contains a total of 11, 339, 253
non-zero elements.

For this switch network, the steady state probability was
found and shown on Fig. 5, 6 with errors for each IRG:
RIRG

1 : 5.8808 × 10−7, RIRG
2 : 9.7086 × 10−7, RIRG

3 :
5.8808×10−7, and RIRG

2 : 9.7086×10−7 which are smaller
than the predefined error tolerance 10−5.

The steady state probability landscape of species A and C
is plotted on Fig. 5. The steady state probability landscape of
species B and D is plotted on Fig. 6. Switching behavior of
each gene pairs is shown in both plots. For example, for the
pair of proteins A and C (Fig. 5), we can observe that the
increase of the concentration of the protein C leads to the
increase of the probability of GeneA to be bound, as well as
the reduction of the concentration of the protein A. There is
an opposite effect as well: the increase of the concentration
of protein A leads to the decrease of the concentration of
the protein C.

IV. CONCLUSION

Here we present results of exact calculation of steady state
probability landscape of two stochastic network modules that
are widely found in biological circuits [7]. Our results show
that their probability landscape can be studied in details using
the Finite Buffer dCME Method.
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