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Abstract— X-ray computed tomography (CT) scanners pro-
vide clinical value through high resolution and fast imaging.
However, achievement of higher signal-to-noise ratios generally
requires emission of more X-rays, resulting in greater dose
delivered to the body of the patient. This is of concern, as
higher dose leads to greater risk of cancer, particularly for
those exposed at a younger age. Therefore, it is desirable to
achieve comparable scan quality while limiting X-ray dose. One
means to achieve this compound goal is the use of compressed
sensing (CS). A novel framework is presented to combine CS
theory with X-ray CT. According to the tensor discrete Fourier
slice theorem, the 1-D DFT of discrete Radon transform data is
exactly mapped on a Cartesian 2-D DFT grid. The nonuniform
random density sampling of Fourier coefficients is made feasible
by uniformly sampling projection angles at random. Application
of the non-convex CS model further reduces the sufficient
number of measurements by enhancing sparsity. The numerical
results show that, with limited projection data, the non-convex
CS model significantly improves reconstruction performance
over the convex model.

I. INTRODUCTION

We first consider the discrete Radon tgansform (DRT) of
the discrete image x = z(m,n) € RY" on the Cartesian

grid:
N-1N-1

po(r) = Z Z ag r(m,n)x(m,n)

m=0 m=0

where ag .(m,n) = 1, if the 7™ ray at projection angle 6
intersects the center of pixel x(m,n), and ag ,(m,n) = 0,
otherwise. Under the assumption that the resolution of the
image is sufficiently high, this model is close to the line-
based projection model using ag .(m,n) = length of the
ray at angle 6 intersecting z:(m,n). According to the tensor
discrete Fourier slice theorem (T-DFST, see Proposition 2.1),
if the projection angle and detector location are decided
in a sophisticated way, the 1-D DFT of the DRT can be
exactly mapped on a Cartesian 2-D DFT grid, a relation that
cannot be achieved with the continuous Fourier slice theorem
(CFST).

Compressed Sensing (CS) is an attractive theory to re-
construct images from few measurements. Assuming /) a
partial sensing matrix Ro® € CV' %N’ in which a diagonal
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projection matrix Rq has the m™ entry 1 if m € € and 0
otherwise, |Q2] = M <« N’ is chosen uniformly at random,
and & € CN'*N' where {¢n}£,\l1 is an orthonormal basis
of CN //; 2) a sparsifying transform ¥ € CN'*N' where
{1}, is orthonormal basis of C'; and 3) y = Roy® €
CN" with full yO, then the s-sparse solution in basis ¥
(|®z)o 2 [supp(¥z)| < s < N’, where x € CN') of
y = Rq®z can be perfectly recovered with high probability
by solving the following convex optimization problem:

argmin ||®z||;, st. y = RoPz (1)

with sufficient number of measurements,
M > ci*(U)N'slog(N') )

for some constant ¢, where the mutual coherence (MC) is
w(U) = maxy, » [um.n| € [1/VN',1] for m,n = 1,..., N,
and U = &0} [1], [2]. If, for example & = DFT and
¥ = Identity so that u(U) = 1/v/N, then (2) states that
compressed sensing requires an optimally small number of
measurements, up to a log factor. However, if ¥ = discrete
Haar transform (DHT), then the MC is high, u(U) = 1,
and (2) predicts a barrier in the performance of compressed
sensing. To overcome this, one must sample according to a
nonuniform density, as was recently explained in [3].

Even when the MC is low, the requirement (2) on the
number of measurements may be too stringent. In practice,
one can reduce this number by solving the following non-
convex minimization problem:

argmin || Wz||F, s.t. y = R, ®z, 3)

with I,(p € (0,1))-quasi-norm. Several results in the liter-
ature show the advantage of this approach. For example, if
® has i.i.d. Gaussian entries and ¥ = I, then we require a
number of measurements

M > Cy(p)s 4 pCa(p)slog(N'/s)

where the constants C;(p) and Cy(p) decrease as p — 0.
In particular, the log factor in N’ vanishes as p — 0 [4],
[5]. Although solving (3) remains an NP-hard problem [6],
it has been demonstrated [4]-[6] that a local minimum can be
computed, provided Wz decays quickly and M is sufficiently
large. In [7], [8], the local minimum of (3) shows higher
recovery accuracy than the global minimum from (1).

In our framework, based on T-DFST, nonuniform density
random sampling of 2-D Fourier samples is possible by
uniformly sampling projection angles at random. We applied
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a non-convex CS model to further reduce the sufficient
number of measurements.

II. METHODS

Let X = {X(u,v) : u,o = 0,...,N —1} € CV" be
the N x N- pomt 2-D DFT of the 1mage x = {z(m,n) :
myn =0,...,N—1} € RN". Let Py = {Py(w) : w =
0,...,N — 1} € CN be the 1D N-point DFT of N-point
DRT py = {pp(r) : r = 0,...,N — 1} € RV for each
projection angle 6 with the horizontal axis, where the set
of 6 is defined as {§ = arctan(v/u) : (u,v) € Jyn}.
According to T-DFST (Proposition 2.1) and uniform random
sampling of 6, the nonuniform random Fourier measurement
y=RpX € CN* can be obtained from Py. Based on this
framework, we have the following discrete CT system model:

y =Rq®Px +n,

where a partial DFT matrix Rq® with a DFT matrix ® €
CN**N* and a diagonal projection matrix R € RY xN?
with m™ entry 1 if m € Q and 0 otherwise, where the
nonuniform randomly sub-sampled Q C {1,...,N?} and
Q| = M < N2. Applying ,(p € (0,1))-quasi-norm on
DHT, the proposed non-convex CS CT reconstruction model
can be written as:

th

x* = argmin [|[Ux||} + [|x[|7v s.t. [y — Ro®x|| <n, 4)
X

where DHT ¥ € CN**N”: and the anisotropic total variation
(TV) transform Ix|lrv = HG1x||1 + ||Gax||1, where G; €
2

CN**N* and G, e CN xN? denote horizontal and vertical
direction gradient transform.
A. Tensor Discrete Fourier Slice Theorem

Proposition 2.1: (Tensor discrete Fourier slice theorem,
T-DFST)

P(u,v) (U})
N — 1 (tensor representation of 2-D DFT

= X (wu mod N, wv mod N),

where w =0, ...,

in [9)).
Proof:
1 = dN
Let Q(u,v) T(m7 n) = e f',lrU "o . Then,
o 0, otherwise

N—-1

Pluwy (W) = ) Pluw) M)Wy
r=0

r=0 m=0 n=0
N-1N-1 N-1
= x(m,n) Aup),r (M, )W,
m=0 n=0 r=0
N-1N-1
= x(m, n)WN(mu+M)

where X(u,v) = Y NI
Wy = exp(—j27/N).

g 01 z(m,n) W™ and

(a) (b)
Mapping redundancy and random sampling in 2-D Fourier domain,
based on T-DFST: (a) high mapping redundancy of T-DFST for N = 256
(brighter color means higher mapping redundancy) and (b) nonuniform
random sampling pattern of 2-D DFT by uniform sampling of 17 angles at
random for N = 257.

Fig. 1.

|
Note that p(, .)(r), where r = 0,..., N — 1, is periodic
with period NV, i.e. p(y,) (1) = P(u,v)(r +N). The set of the
projections is denoted by

Ty» = {(wumod N,wvmod N): w=0,...,

N — 1},
since the signals carry the information about the 2-D DFT
as Proposition 2.1 stated.

The set J n of frequency-points (u, v) should be selected
in a way to cover the whole Cartesian lattice Ly ny =
{(u,v) : u,v =0,..., N — 1} with the minimum number of
subsets Ty, ,, i.e. U(U{U)GJN‘N Tuv = Ly n. The set Jy N
contains 3N/2 of (u,v) and can be defined as

IJnvn ={(l,v):v=0,...,N —1}U
o)
{(2u,1) :u=0,...,N/2 —1}.
The total number of projection measurements is 3N2/2

which exceeds the number of unknown pixels, N 2, There
are many mutual intersections of the subsets T, ,, where
(u,v) € Jn . In summary, if N is a power of 2, this
mapping redundancy is inevitable and not suitable to reduce
the number of projections. However, if NV is a prime number,
we can remove the high mapping redundancy. If N is prime,
the cardinality of the irreducible set Jy n which covers
Cartesian lattice Ly n is N 4+ 1. For example, it can be
given by

Iy ={1,v):v=0,...,N—1}U{(0,1)} or

Iy ={(u,1):u=0,...,N—-1}U{(1,0)}
Therefore, to calculate an X of size N x N, it is sufficient
to obtain (N + 1) x N projection measurements, when N is

prime. The mapping redundancy is graphically illustrated in
Fig. 1(a); see details in [9].

B. Relaxation of Constrained Non-Convex Problem with
Reweighted Constrained Convex Problem

Property 2.2: The constrained non-convex problem de-
fined as

x* = argmin [|x||P, s.t. constraint(x), (6)
x€CN

for 0 < p < 1, can be transformed into following reweighted

constrained convex minimization problem:

x* ) — argmin || Q™ x||1, s.t. constraint(x), (7)

xeCN
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Convex CS

Non-convex CS Reference

Fig. 2. Compa.nson of 257x257 reconstructed images from different CT reconstructions (£ = 15 views): (a) whole images and (b) zoomed-in images

TABLE I
RECONSTRUCTION ACCURACY WITH DIFFERENT METHODS AND
PROJECTION VIEWS

SERg4g RMSE (><10—1)
z (@) (b) () (@) (b) ©
14 | 2.0164 4.8702 15.2234 | 2.6354 1.8973  0.5761
15 | 2.0194 5.0244 50.6299 | 2.6345 1.8636  0.0098
17 | 2.0239 5.3935 654033 | 2.6331 1.7861  0.0018

* CT reconstruction methods: (a) ifft5, (b) convex CS, and (c)
non-convex CS.

where Q¥ = diag(q®), in which ¢\ = p(|z| + )P,
n=1,..., N, and diag(-) denotes the conversion of a vector
into a diagonal matrix.

The brief derivation of Property 2.2 is described in [7] us-
ing the majorization minimization (MM) and approximation
of I,(p € (0,1))-quasi-norm with Lipschitz continuity (i.e.
Ix]|8 & Bpe(x) = SN (Jzn| + €)P). Note that x*+1) of
(7) converges to a local minimum of (6) if € — 0.

According to Property 2.2, (4) can be transformed as

x D — argmin | QW Wx||y + [|Gix||r + [|Gax|lx
st ||y — Ro®x|3 <7,

where Q¥ = diag(q™®)), with g = p(|[TxP],| +e)P 1,
n=1,..., N2 Note that the reweighted /;-norm minimiza-
tion is expected to recover sparse signals with lower error
than a reweighted [s-norm minimization (e.g., FOCUSS)
[10].

C. Reweighted Constrained l1-Norm Minimization by SB

The Split Bregman (SB) method is known to exhibit rapid
and efficient convergence for /;-norm [11] minimization.
Using a simplified Bregman iteration technique [12], (8) can
be reduced to a sequence of unconstrained problems:

xFH) = arg(ﬂiin||Q(k)‘I’X(k)||1 +1G1x®|1 + [|Gox M|y
x k

+(a/2)[y® — Ra®x™|3;

(C))

YD) = 0 4y R @x(kED),

After transforming (9) to a constrained problem (i.e. dgc ) —
AP = Gx®, and AP = Gyx®), (9) is
equivalent to the following two phase algorithm, via SB:

(x(k+1)7dgﬁ-l)’dgk—kl),dngrl))
k k k
1Q®AY 11 + 1d™ 11 + 18" |11+

= argmin
x() a ¥ af
(a/2)]ly™® — Ro@x®|2+
(8/2)1dy) — ox® — b2
k k
(v/2)[d} — Gix® — b |24
k k
(7/2)1d5 — Gox™® — bl |12; 0
B _ p#) (k1) _ qUk+D) 1o
v = by + Ux —d\I, ,
bglﬁ_l) _ b(k) + Glx(k+1) _ dgk-ﬂ),

bék+1) dék-&-l)‘

= bék) + G2X<k+1) —

Because /; and [, components are decomposed, we can solve
(10) efficiently by minimizing it separately with respect to
x®, dP, a®, and d”. The al™, d**V, and a{F™
can be quickly solved by separability of norms and an
element-wise soft-shrinkage operator:

dg“:l) = softshrznk([\llx(k+1)] \I, n,qn )/ﬁ)
A"V = softshrink([Gix*), + bg’i{, 1/7),
dékjl) = softshmnk([ng(kH)] 2 n, 1/7),

where softshrink(z, a) = (x/|z|)maz(|z| —a,0) and n =
1,...,N2. Therefore the total reconstruction time depends
on the computational cost to solve (10) with respect to x(*):

xF+D) — H A1 Ph,

where diagonal matrix A = aRZRq + BI +v®(GH G +
GHG2)<I>H and h = a®"RLy® + gwH (AP — b)) +
~GH (@M — by 4 GH(d(k) b{)). Note that GG, +
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G1'Gy has circulant structure with periodic boundary con-
dition. The main computation is only a pair of fft, and ifft,.
We should also note that Q(*) is updated for every outer
iteration.

IT1I. SIMULATION RESULTS AND DISCUSSIONS

Reconstruction algorithms were tested on a 257 X 257
NCAT chest phantom image having intensity € [0,1]. The
DRT-based sinogram was generated with £ x 257 parallel-
beam scanner geometry and defined Jy , where uniform
randomly sampled £ = 14, 15, and 17 views, which approx-
imately correspond to 5.5%, 6.0%, and 6.5% of the 258 total
projection angles. The ray spacing is variable with different
angles. An additive noise is not considered. For the initial
guess, x(¥) = ifft,(y) was obtained. For both of the CS
models, a = 1, § = 100, v = 100 are used. For non-
convex CS, p = 1072 and € = 5 x 1072 are additionally
used. A DHT filter size of 4 was used. The stopping criterion
can be calculated as tol(k) = ||y — Ro®x®(3/||y||3. The
error minimization is evaluated with the following two mea-
surements: RMSEz(k) = log;, (RMSE(x!Tue, x%)));
SERgs(k) = 20logyq (||xfre — x5 /||x!"4¢||5), where
SER stands for signal to error ratio.

A. Reconstruction Accuracy

In terms of reconstruction accuracy, the non-convex CS
reconstruction model outperforms the convex CS model, and
accomplishes almost exact image reconstruction with only 15
projection angles (Fig. 2 and Table I).

B. Error Minimization Behavior

Fig. 3 shows that a larger number of measurements results
in faster convergence and smaller error. Note that one cannot
always expect to find a global minimum from [, ((p,e €
(0,1)) minimization. Moreover, the stability and simplicity
of the MM algorithm frequently comes at the price of slow
convergence: Fig. 3 illustrates the “waterfall” convergence
behavior of the non-convex minimization.

C. Practical Applicability of T-DFST

We should note that it is premature to apply this technique
in practice. /) Actual imaging using the DRT-based geometry
is tricky: non-uniform ray spacing across projections is
difficult to implement. 2) Although the DRT-based projection
model can become close to a line-based model, it cannot
match. Linear system solutions to this limitation are in-
troduced in [13] and [14] to transform continuous Radon
transform (CRT) data to DRT data. However, more CRTs are
required at each angle to successfully estimate the DRTs (i.e.
the actual sampling reduction here is over-estimated). 3) The
usage of both of the CFST and T-DFST for CT reconstruction
is fragile to the practical case of Poisson noise.

IV. CONCLUSIONS

A non-convex CS CT reconstruction using T-DFST has
been presented. The nonuniform randomness of Fourier sam-
ples is provided by uniform sampling of random projection
angles. MM is used for non-convex optimization relaxation

T T T T T
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Fig. 3. Error minimization behavior for different CS models and projection

angles

and SB is applied for efficient implementation. The method
can achieve almost perfect image reconstruction from fewer
measurements than a convex CS model. However, to apply
this framework in practice, several limitations exist as we
described above.
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