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Abstract— X-ray computed tomography (CT) scanners pro-
vide clinical value through high resolution and fast imaging.
However, achievement of higher signal-to-noise ratios generally
requires emission of more X-rays, resulting in greater dose
delivered to the body of the patient. This is of concern, as
higher dose leads to greater risk of cancer, particularly for
those exposed at a younger age. Therefore, it is desirable to
achieve comparable scan quality while limiting X-ray dose. One
means to achieve this compound goal is the use of compressed
sensing (CS). A novel framework is presented to combine CS
theory with X-ray CT. According to the tensor discrete Fourier
slice theorem, the 1-D DFT of discrete Radon transform data is
exactly mapped on a Cartesian 2-D DFT grid. The nonuniform
random density sampling of Fourier coefficients is made feasible
by uniformly sampling projection angles at random. Application
of the non-convex CS model further reduces the sufficient
number of measurements by enhancing sparsity. The numerical
results show that, with limited projection data, the non-convex
CS model significantly improves reconstruction performance
over the convex model.

I. INTRODUCTION
We first consider the discrete Radon transform (DRT) of

the discrete image x = x(m,n) ∈ RN2

on the Cartesian
grid:

pθ(r) =

N−1∑
m=0

N−1∑
m=0

aθ,r(m,n)x(m,n)

where aθ,r(m,n) = 1, if the rth ray at projection angle θ
intersects the center of pixel x(m,n), and aθ,r(m,n) = 0,
otherwise. Under the assumption that the resolution of the
image is sufficiently high, this model is close to the line-
based projection model using aθ,r(m,n) = length of the rth

ray at angle θ intersecting x(m,n). According to the tensor
discrete Fourier slice theorem (T-DFST, see Proposition 2.1),
if the projection angle and detector location are decided
in a sophisticated way, the 1-D DFT of the DRT can be
exactly mapped on a Cartesian 2-D DFT grid, a relation that
cannot be achieved with the continuous Fourier slice theorem
(CFST).

Compressed Sensing (CS) is an attractive theory to re-
construct images from few measurements. Assuming 1) a
partial sensing matrix RΩΦ ∈ CN ′×N ′

, in which a diagonal
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projection matrix RΩ has the mth entry 1 if m ∈ Ω and 0
otherwise, |Ω| = M � N ′ is chosen uniformly at random,
and Φ ∈ CN ′×N ′

where {φn}N
′

n=1 is an orthonormal basis
of CN ′

; 2) a sparsifying transform Ψ ∈ CN ′×N ′
, where

{ψn}N
′

n=1 is orthonormal basis of CN ′
; and 3) y = RΩy0 ∈

CN ′
with full y0, then the s-sparse solution in basis Ψ

(‖Ψz‖0 , |supp(Ψz)| ≤ s � N ′, where x ∈ CN ′
) of

y = RΩΦz can be perfectly recovered with high probability
by solving the following convex optimization problem:

argmin
z
‖Ψz‖1, s.t. y = RΩΦz (1)

with sufficient number of measurements,

M ≥ cµ2(U)N ′s log(N ′) (2)

for some constant c, where the mutual coherence (MC) is
µ(U) = maxm,n |um,n| ∈ [1/

√
N ′, 1] for m,n = 1, ..., N ′,

and U = ΦΨ−1 [1], [2]. If, for example Φ = DFT and
Ψ = Identity so that µ(U) = 1/

√
N , then (2) states that

compressed sensing requires an optimally small number of
measurements, up to a log factor. However, if Ψ = discrete
Haar transform (DHT), then the MC is high, µ(U) = 1,
and (2) predicts a barrier in the performance of compressed
sensing. To overcome this, one must sample according to a
nonuniform density, as was recently explained in [3].

Even when the MC is low, the requirement (2) on the
number of measurements may be too stringent. In practice,
one can reduce this number by solving the following non-
convex minimization problem:

argmin
z
‖Ψz‖pp, s.t. y = RΩΦz, (3)

with lp(p ∈ (0, 1))-quasi-norm. Several results in the liter-
ature show the advantage of this approach. For example, if
Φ has i.i.d. Gaussian entries and Ψ = I, then we require a
number of measurements

M ≥ C1(p)s+ pC2(p)s log(N ′/s)

where the constants C1(p) and C2(p) decrease as p → 0.
In particular, the log factor in N ′ vanishes as p → 0 [4],
[5]. Although solving (3) remains an NP-hard problem [6],
it has been demonstrated [4]-[6] that a local minimum can be
computed, provided Ψz decays quickly and M is sufficiently
large. In [7], [8], the local minimum of (3) shows higher
recovery accuracy than the global minimum from (1).

In our framework, based on T-DFST, nonuniform density
random sampling of 2-D Fourier samples is possible by
uniformly sampling projection angles at random. We applied
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a non-convex CS model to further reduce the sufficient
number of measurements.

II. METHODS
Let X = {X(u, v) : u, v = 0, . . . , N − 1} ∈ CN2

be
the N × N -point 2-D DFT of the image x = {x(m,n) :
m,n = 0, . . . , N − 1} ∈ RN2

. Let Pθ = {Pθ(w) : w =
0, . . . , N − 1} ∈ CN be the 1D N -point DFT of N -point
DRT pθ = {pθ(r) : r = 0, . . . , N − 1} ∈ RN for each
projection angle θ with the horizontal axis, where the set
of θ is defined as {θ = arctan(v/u) : (u, v) ∈ JN,N}.
According to T-DFST (Proposition 2.1) and uniform random
sampling of θ, the nonuniform random Fourier measurement
y = RΩX ∈ CN2

can be obtained from Pθ. Based on this
framework, we have the following discrete CT system model:

y = RΩΦx + n,

where a partial DFT matrix RΩΦ with a DFT matrix Φ ∈
CN2×N2

and a diagonal projection matrix RΩ ∈ RN2×N2

with mth entry 1 if m ∈ Ω and 0 otherwise, where the
nonuniform randomly sub-sampled Ω ⊆ {1, . . . , N2} and
|Ω| = M � N2. Applying lp(p ∈ (0, 1))-quasi-norm on
DHT, the proposed non-convex CS CT reconstruction model
can be written as:

x∗ = argmin
x
‖Ψx‖pp + ‖x‖TV s.t. ‖y−RΩΦx‖ < η, (4)

where DHT Ψ ∈ CN2×N2

; and the anisotropic total variation
(TV) transform ‖x‖TV = ‖G1x‖1 + ‖G2x‖1, where G1 ∈
CN2×N2

and G2 ∈ CN2×N2

denote horizontal and vertical
direction gradient transform.

A. Tensor Discrete Fourier Slice Theorem

Proposition 2.1: (Tensor discrete Fourier slice theorem,
T-DFST)

P(u,v)(w) = X(wu mod N,wv mod N),

where w = 0, . . . , N − 1 (tensor representation of 2-D DFT
in [9]).

Proof:

Let a(u,v),r(m,n) =

{
1, mu+ nv = r mod N

0, otherwise
. Then,

P(u,v)(w) =

N−1∑
r=0

p(u,v)(r)W
wr
N

=

N−1∑
r=0

N−1∑
m=0

N−1∑
n=0

a(u,v),r(m,n)x(m,n)Wwr
N

=

N−1∑
m=0

N−1∑
n=0

x(m,n)

N−1∑
r=0

a(u,v),r(m,n)Wwr
N

=

N−1∑
m=0

N−1∑
n=0

x(m,n)W
w(mu+nv)
N

= X(wu,wv) = X(wu mod N,wv mod N),

where X(u, v) =
∑N−1
m=0

∑N−1
n=0 x(m,n)Wmu+nv

N and
WN = exp(−j2π/N).

(a) (b)
Fig. 1. Mapping redundancy and random sampling in 2-D Fourier domain,
based on T-DFST: (a) high mapping redundancy of T-DFST for N = 256
(brighter color means higher mapping redundancy) and (b) nonuniform
random sampling pattern of 2-D DFT by uniform sampling of 17 angles at
random for N = 257.

Note that p(u,v)(r), where r = 0, . . . , N − 1, is periodic
with period N , i.e. p(u,v)(r) = p(u,v)(r+N). The set of the
projections is denoted by

Tu,v = {(wu mod N,wv mod N) : w = 0, . . . , N − 1},

since the signals carry the information about the 2-D DFT
as Proposition 2.1 stated.

The set JN,N of frequency-points (u, v) should be selected
in a way to cover the whole Cartesian lattice LN,N =
{(u, v) : u, v = 0, ..., N − 1} with the minimum number of
subsets Tu,v , i.e.

⋃
(u,v)∈JN,N

Tu,v = LN,N . The set JN,N
contains 3N/2 of (u, v) and can be defined as

JN,N ={(1, v) : v = 0, . . . , N − 1}∪
{(2u, 1) : u = 0, . . . , N/2− 1}.

(5)

The total number of projection measurements is 3N2/2
which exceeds the number of unknown pixels, N2. There
are many mutual intersections of the subsets Tu,v , where
(u, v) ∈ JN,N . In summary, if N is a power of 2, this
mapping redundancy is inevitable and not suitable to reduce
the number of projections. However, if N is a prime number,
we can remove the high mapping redundancy. If N is prime,
the cardinality of the irreducible set JN,N which covers
Cartesian lattice LN,N is N + 1. For example, it can be
given by

JN,N = {(1, v) : v = 0, . . . , N − 1} ∪ {(0, 1)} or
JN,N = {(u, 1) : u = 0, . . . , N − 1} ∪ {(1, 0)}

Therefore, to calculate an X of size N ×N , it is sufficient
to obtain (N + 1)×N projection measurements, when N is
prime. The mapping redundancy is graphically illustrated in
Fig. 1(a); see details in [9].

B. Relaxation of Constrained Non-Convex Problem with
Reweighted Constrained Convex Problem

Property 2.2: The constrained non-convex problem de-
fined as

x∗ = argmin
x∈CN

‖x‖pp, s.t. constraint(x), (6)

for 0 < p < 1, can be transformed into following reweighted
constrained convex minimization problem:

x(k+1) = argmin
x∈CN

‖Q(k)x‖1, s.t. constraint(x), (7)
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ifft2 Convex CS Non-convex CS Reference

(a)

(b)

Fig. 2. Comparison of 257×257 reconstructed images from different CT reconstructions (∠ = 15 views): (a) whole images and (b) zoomed-in images

TABLE I
RECONSTRUCTION ACCURACY WITH DIFFERENT METHODS AND

PROJECTION VIEWS

SERdB RMSE (×10−1)

∠ (a) (b) (c) (a) (b) (c)
14 2.0164 4.8702 15.2234 2.6354 1.8973 0.5761
15 2.0194 5.0244 50.6299 2.6345 1.8636 0.0098
17 2.0239 5.3935 65.4033 2.6331 1.7861 0.0018

* CT reconstruction methods: (a) ifft2, (b) convex CS, and (c)
non-convex CS.

where Q(k) = diag(q(k)), in which q(k)
n = p(|x(k)

n |+ ε)p−1,
n = 1, . . . , N , and diag(·) denotes the conversion of a vector
into a diagonal matrix.

The brief derivation of Property 2.2 is described in [7] us-
ing the majorization minimization (MM) and approximation
of lp(p ∈ (0, 1))-quasi-norm with Lipschitz continuity (i.e.
‖x‖pp ≈ lp,ε(x) =

∑N
n=1(|xn| + ε)p). Note that x(k+1) of

(7) converges to a local minimum of (6) if ε→ 0.
According to Property 2.2, (4) can be transformed as

x(k+1) = argmin
x

‖Q(k)Ψx‖1 + ‖G1x‖1 + ‖G2x‖1

s.t. ‖y −RΩΦx‖22 < η,
(8)

where Q(k) = diag(q(k)), with q(k)
n = p(|[Ψx(k)]n|+ε)p−1,

n = 1, . . . , N2. Note that the reweighted l1-norm minimiza-
tion is expected to recover sparse signals with lower error
than a reweighted l2-norm minimization (e.g., FOCUSS)
[10].

C. Reweighted Constrained l1-Norm Minimization by SB
The Split Bregman (SB) method is known to exhibit rapid

and efficient convergence for l1-norm [11] minimization.
Using a simplified Bregman iteration technique [12], (8) can
be reduced to a sequence of unconstrained problems:

x(k+1) = argmin
x(k)

‖Q(k)Ψx(k)‖1 + ‖G1x
(k)‖1 + ‖G2x

(k)‖1

+ (α/2)‖y(k) −RΩΦx(k)‖22;
(9)

y(k+1) = y(k) + y −RΩΦx(k+1),

After transforming (9) to a constrained problem (i.e. d
(k)
Ψ =

Ψx(k), d
(k)
1 = G1x

(k), and d
(k)
2 = G2x

(k)), (9) is
equivalent to the following two phase algorithm, via SB:

(x(k+1),d
(k+1)
Ψ ,d

(k+1)
1 ,d

(k+1)
2 )

= argmin
x(k),d

(k)
Ψ ,d

(k)
1 ,d

(k)
2

‖Q(k)d
(k)
Ψ ‖1 + ‖d(k)

1 ‖1 + ‖d(k)
2 ‖1+

(α/2)‖y(k) −RΩΦx(k)‖22+

(β/2)‖d(k)
Ψ −Ψx(k) − b

(k)
Ψ ‖

2
2

(γ/2)‖d(k)
1 −G1x

(k) − b
(k)
1 ‖22+

(γ/2)‖d(k)
2 −G2x

(k) − b
(k)
2 ‖22;

(10)
b

(k+1)
Ψ = b

(k)
Ψ + Ψx(k+1) − d

(k+1)
Ψ ,

b
(k+1)
1 = b

(k)
1 + G1x

(k+1) − d
(k+1)
1 ,

b
(k+1)
2 = b

(k)
2 + G2x

(k+1) − d
(k+1)
2 .

Because l1 and l2 components are decomposed, we can solve
(10) efficiently by minimizing it separately with respect to
x(k), d

(k)
Ψ , d

(k)
1 , and d

(k)
2 . The d

(k+1)
Ψ , d

(k+1)
1 , and d

(k+1)
2

can be quickly solved by separability of norms and an
element-wise soft-shrinkage operator:

d
(k+1)
Ψ,n = softshrink([Ψx(k+1)]n + b

(k)
Ψ,n, q

(k)
n /β),

d
(k+1)
1,n = softshrink([G1x

(k+1)]n + b
(k)
1,n, 1/γ),

d
(k+1)
2,n = softshrink([G2x

(k+1)]n + b
(k)
2,n, 1/γ),

where softshrink(x, α) = (x/|x|)max(|x|−α, 0) and n =
1, . . . , N2. Therefore the total reconstruction time depends
on the computational cost to solve (10) with respect to x(k):

x(k+1) = ΦHΛ−1Φh,

where diagonal matrix Λ = αRT
ΩRΩ + βI + γΦ(GH

1 G1 +

GH
2 G2)ΦH and h = αΦHRT

Ωy(k) + βΨH(d
(k)
Ψ − b

(k)
Ψ ) +

γGH
1 (d

(k)
1 − b

(k)
1 ) + GH

2 (d
(k)
2 − b

(k)
2 ). Note that GH

1 G1 +
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GH
2 G2 has circulant structure with periodic boundary con-

dition. The main computation is only a pair of fft2 and ifft2.
We should also note that Q(k) is updated for every outer
iteration.

III. SIMULATION RESULTS AND DISCUSSIONS

Reconstruction algorithms were tested on a 257 × 257
NCAT chest phantom image having intensity ∈ [0, 1]. The
DRT-based sinogram was generated with ∠ × 257 parallel-
beam scanner geometry and defined JN,N , where uniform
randomly sampled ∠ = 14, 15, and 17 views, which approx-
imately correspond to 5.5%, 6.0%, and 6.5% of the 258 total
projection angles. The ray spacing is variable with different
angles. An additive noise is not considered. For the initial
guess, x(0) = ifft2(y) was obtained. For both of the CS
models, α = 1, β = 100, γ = 100 are used. For non-
convex CS, p = 10−3 and ε = 5 × 10−2 are additionally
used. A DHT filter size of 4 was used. The stopping criterion
can be calculated as tol(k) = ‖y −RΩΦx(k)‖22

/
‖y‖22. The

error minimization is evaluated with the following two mea-
surements: RMSElog(k) = log10

(
RMSE(xtrue,x(k))

)
;

SERdB(k) = 20 log10

(
‖xtrue − x(k)‖2

/
‖xtrue‖2

)
, where

SER stands for signal to error ratio.

A. Reconstruction Accuracy

In terms of reconstruction accuracy, the non-convex CS
reconstruction model outperforms the convex CS model, and
accomplishes almost exact image reconstruction with only 15
projection angles (Fig. 2 and Table I).

B. Error Minimization Behavior

Fig. 3 shows that a larger number of measurements results
in faster convergence and smaller error. Note that one cannot
always expect to find a global minimum from lp,ε(p, ε ∈
(0, 1)) minimization. Moreover, the stability and simplicity
of the MM algorithm frequently comes at the price of slow
convergence: Fig. 3 illustrates the “waterfall” convergence
behavior of the non-convex minimization.

C. Practical Applicability of T-DFST

We should note that it is premature to apply this technique
in practice. 1) Actual imaging using the DRT-based geometry
is tricky: non-uniform ray spacing across projections is
difficult to implement. 2) Although the DRT-based projection
model can become close to a line-based model, it cannot
match. Linear system solutions to this limitation are in-
troduced in [13] and [14] to transform continuous Radon
transform (CRT) data to DRT data. However, more CRTs are
required at each angle to successfully estimate the DRTs (i.e.
the actual sampling reduction here is over-estimated). 3) The
usage of both of the CFST and T-DFST for CT reconstruction
is fragile to the practical case of Poisson noise.

IV. CONCLUSIONS

A non-convex CS CT reconstruction using T-DFST has
been presented. The nonuniform randomness of Fourier sam-
ples is provided by uniform sampling of random projection
angles. MM is used for non-convex optimization relaxation
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Fig. 3. Error minimization behavior for different CS models and projection
angles

and SB is applied for efficient implementation. The method
can achieve almost perfect image reconstruction from fewer
measurements than a convex CS model. However, to apply
this framework in practice, several limitations exist as we
described above.

REFERENCES

[1] B. Adcock and A. C. Hansen, “Generalized sampling and infinite-
dimensional compressed sensing,” DAMTP Tech. Rep. NA2011/12,
University of Cambridge, Available: http://www.math.purdue.edu/
∼adcock/Papers/BAACHGSCS.pdf, May 2013.

[2] E. J. Candes and Y. Plan, “A probabilistic and RIPless theory of
compressed sensing,” IEEE Trans. Inform. Theory, vol. 57, no. 11,
pp. 7235 – 7254, Nov. 2011.

[3] B. Adcock, A. C. Hansen, C. Poon, and B. Roman, “Breaking the
coherence barrier: a new theory for compressed sensing,” ArXiv pre-
print cs.IT/1302.0561v3, Feb. 2014.

[4] R. Chartrand and V. Staneva, “Restricted isometry properties and
nonconvex compressive sensing,” Inverse Probl., vol. 24, no. 3, p.
035020, Jun. 2008.

[5] Y. Shen and S. Li, “Restricted p-isometry property and its application
for nonconvex compressive sensing,” Adv. Comput. Math., vol. 37,
no. 3, pp. 441 – 452, Oct. 2012.

[6] D. Ge, X. Jiang, and Y. Ye, “A note on complexity of Lp minimiza-
tion,” Math. Program., vol. 129, no. 2, pp. 285 – 299, Oct. 2011.

[7] I.Y. Chun and T. Talavage, “Efficient compressed sensing statistical x-
ray/CT reconstruction from fewer measurements,” in Proc. Intl. Mtg.
on Fully 3D Image Recon. in Rad. and Nuc. Med, Lake Tahoe, CA,
Jun. 2013, pp. 30 – 33.

[8] ——, “Fast non-convex statistical compressed sensing MRI recon-
struction based on approximated Lp(0 < p < 1)-quasi-norm with
fewer measurements than using L1-norm,” in Proc. 21st Intl. Soc.
Mag. Res. Med., Salt Lake City, UT, Apr. 2013.

[9] A. M. Grigoryan and S. S. Agaian, Multidimensional Discrete Unitary
Transforms: Representation, Partitioning, and Algorithms. CRC
Press, 2003.

[10] E. J. Candes, M. B. Wakin, and S. P. Boyd, “Enhancing sparsity by
reweighted l1 minimization,” J. Fourier Anal. Appl., vol. 14, no. 5-6,
pp. 877 – 905, Dec. 2008.

[11] T. Goldstein and S. Osher, “The split Bregman method for L1-
regularized problems,” SIAM Journal on Imag. Sciences, vol. 2, no. 2,
pp. 323 – 343, Apr. 2009.

[12] W. Yin, S. Osher, D. Goldfarb, and J. Darbon, “Bregman iterative
algorithms for l1-minimization with applications to compressed sens-
ing,” SIAM Journal on Imag. Sciences, vol. 1, no. 2, pp. 143 – 168,
Mar. 2008.

[13] B. Recur, P. Desbarats, and J. P. Domenger, “Radon and Mojette
projections equivalence for tomographic reconstruction using linear
systems,” in Proc. 16th WSCG, Plzen, Czech Republic, Feb. 2008, pp.
191 – 198.

[14] A. Grigoryan, “Image reconstruction from finite number of projec-
tions: method of transferring geometry,” IEEE Trans. Image Process.,
vol. 22, no. 12, pp. 4738 – 4751, Dec. 2013.

5144


