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Abstract— Geometric remodelling of the left ventricle (LV)
following myocardial infarction reflects on the geometric char-
acteristics directly. This study focuses on a potential index
based on curvedness. Nine consecutive normal volunteers and
thirty consecutive myocardial infarction patients underwent
MRI scan (twenty-seven patients had follow-up scan). Short-axis
cine images of all cases were delineated. Three dimensional LV
models were reconstructed and restored for possible motion dis-
tortion. The curvedness values were computed over 16-segments
nomenclature. The curvedness signal for each segment over
twenty-two time frames were fitted using a second order Fourier
Series. Fourier coefficients were extracted and unsupervised
learning was conducted between normal and patient data. An
accuracy of 89% and adjusted Rand Index of 0.5374 suggest
that these Fourier Series and curvedness based features can be
an useful index for prognosis and diagnosis in clinical practice.

I. INTRODUCTION
Myocardial Infarction (MI) is an ischemic heart disease

of the myocardial tissue, which is usually accompanied by
left ventricular (LV) remodeling and loss of contractility [1],
[2], [3], [4]. The geometry of the LV is complicated, and
a comprehensive three dimensional approach to evaluate the
ventricular contractility and geometric dynamics throughout
the cardiac cycle is needed. Magnetic resonance imaging
(MRI) is a superior approach to quantitatively assess the
structure and function [5], [6], in comparison to echocar-
diography [7], ventriculography [8], [9], angiography [10]
and indicator-dilution methods [11].

Even though the significance of geometric characteristics
in the analysis of ventricular anatomies and functions has
been recognized for decades, much of the earlier works had
been either of a qualitative nature, or based on an ideal
geometric prototype [12], [13], [4], [14] . The demand of
a patient-specific quantitative geometry approach motivates
this study.
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The present study investigates the potential relation be-
tween the geometric dynamics and the clinician standard
based on a three-dimensional approach. Patient-specific
three-dimensional models were reconstructed from magnetic
resonance images. The surface shape descriptor, i.e., curved-
ness, was computed over the obtained model. Curvedness
values were averaged on the 16-segment LV nomenclature
proposed by the American Heart Association (the apical
segment in the 17-segment model was not considered in our
study). The above computation was performed for each time
frame. For each segment on the LV model, a curvedness-time
signal was obtained. A second-order Fourier Series function
was utilized to fit this time signal. The corresponding Fourier
coefficients from all 16 fitted functions were extracted as the
feature indicating the LV geometric dynamics. Such features
were acquired from both volunteers and MI patients, and
were used in an unsupervised learning, i.e., clustering. Only
the cluster number was assigned in the learning procedure.
The clustering results were evaluated using various criteria,
including accuracy, unadjusted/adjusted Rand Index, and
false positive/negative.

The remainder of this article is organized as follows.
Section 2 describes the methodology. Section 3 provides the
experimental results and the evaluation from several criteria.
Section 4 concludes this article.

II. METHODS

Short-axis MR images were processed in the CMRtools
suite (Cardiovascular Solution, UK). Endocardium was delin-
eated by experts for each slice. The stack of two dimensional
contours were projected into three dimensional space. LV
geometric shapes were then reconstructed via an in-house
software for all temporal phases [15], [16].

The 3D geometric meshes generated were post-processed
using geometric smoothing and restoration [17]. The princi-
pal curvatures at each mesh vertices were computed using
a quadric surface fitting algorithm. So was the curvedness,
which has been validated as a useful geometric descriptor in
ventricular function assessment [15], [18].

According to the guideline of the American Heart Asso-
ciation, the sixteen regions (excluding the apical one) of the
LV were extracted and the per-vertex curvedness value over
each region was averaged. On each region, a time series
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Fig. 1. Flow-chart of our method

(a) Short axis MR image (b) Contours in 3D space

Fig. 2. MR images and contours

representing the varying curvedness over cardiac phases was
obtained. Second order Fourier series were used to fit the
time series to eliminate the high frequency component, i.e.,
noises. To explore the differences of curvedness time series
patterns between normals and MI patients, cluster analysis
was performed on all cases using Fourier series coefficients.

The whole procedure of our study is illustrated by the
flow-chart in Figure 1. Each step is explained in detail in
following subsections.

A. Curvature and Curvedness Computing

LV geometric models were reconstructed from segmented
endocardium contours via an in-house software, see the
contours in Figure 2. The reconstructed LV models were
represented by triangulated surface meshes. To evaluate the
curvature at a vertex on the mesh, a local quadric surface
geometry was fitted to the region [19], [20], [21], [22], [23].
The normal curvature was then computed as follows.

κ(λ) =
L + 2Mλ + Nλ2

E + 2Fλ + Gλ2
, (1)

where λ = dv
du such that u and v are the parameters of

the underlying geometry, and {E, F,G} and {L,M,N}
are components of the first and second fundamental forms,

(a) κ1 (b) κ2 (c) C

Fig. 3. Principal curvatures and curvedness

(a) Curvedness on bulleye
view

(b) Curvedness on 3D view

Fig. 4. Curvedness on 16 regions

repectively. Principal curvatures are defined as the extreme
values of κ(λ), κ1, κ2, which are the roots of the following
equation.

[
L− κE M − κF
M − κF N − κG

]
= 0 (2)

Koenderink [24] defined a shape descriptor curvedness
value (C) as follows.

C =

√
κ2

1 + κ2
2

2
(3)

Curvedness has been proven to be a useful index for eval-
uating ventricular anatomy and function in our previous
studies [9], [25], [21], see the illustration of curvature and
curvedness on a LV model in Figure 3.

B. Curve Fitting via Fourier Series

According to the guideline of the American Heart Associ-
ation, the LV could be segmented into 17 regions. Excluding
the apical region, we computed an average curvedness value
for all 16 regions, see Figure 4. Hence for each region, a
time series consisting of curvedness value throughout the
cardiac cycle was obtained CSeg(t), 1 ≤ Seg ≤ 16, t =
t1, t2, · · · , t22.

A Fourier Series function was used to fit the curvedness-
time signal. An n-order Fourier Series function is as follows
with parameters {a,b, ω} :

f(a,b, ω, t) = a0 +
n∑

i=1

ai cos(iωt) + bi sin(iωt) (4)

where a = [a0, a1, · · · , an]′ and b = [b1, · · · , bn]′.

5114



(a) Normal case I (b) MI case I

(c) MI case II (d) MI case III

(e) MI case IV (f) MI case V

Fig. 5. Examples of curvedness signals for normal and MI patients

The fitting step was a minimization procedure as follows:

(a,b, ω) = arg min
a,b,ω

t22∑
t=t1

|f((a,b, ω, t)− C(t)|2 . (5)

The fitting step eliminated the high frequency component
in the curvedness signal, which reflected the ventricular
motion to some extent. The obtained parameters, i.e., the
Fourier coefficients, and the Fourier Series represent the ma-
jor components in the time-varying signal. From observation,
we could detect some significant differences between the
normal participants and the MI patients as shown in Figure
5.

C. Feature Selection and Unsupervised Learning

Fourier coefficients, i.e., a,b, of all the 16 regions consti-

tute the feature vector, vi =
[
a
b

]
, see Figure 6. Two classic

unsupervised learning (clustering) algorithms, i.e., k-means
and fuzzy c-means, were applied on the data containing the
mixed normal and patient features. The number of expected
clusters was assigned.

III. RESULTS

The study consists of nine normal cases and fifty-seven
cases with myocardial infarction. The fifty-seven cases in-
clude thirty patients scanned at 3-6 months after MI and
twenty-seven follow-up scanned at 9-12 months thereafter.
All subjects were recruited without consideration of gender
or ethnicity, and has given informed consent. The whole

(a) Normal case I (b) MI case I

(c) MI case II (d) MI case III

(e) MI case IV (f) MI case V

Fig. 6. Fourier Series for normal and MI patients in Figure 5

TABLE I
TABLE OF CONFUSION

8 true negatives (AML 0.8599) 1 false positives (AML 0.7226)
6 false negatives (AML 0.7800) 51 true positives (AML 0.9093)

procedure was approved by the human subjects review com-
mittee of the National Heart Centre, Singapore.

All subjects were imaged on a 1.5T Siemens scanner. A
parallel stack of two dimensional cine LV short-axis im-
ages were acquired via segmented k-space and retrospective
electrocardiographic gating. The parallel short-axis imaging
planes were located from the LV base to apex (8 mm
interslice thickness with no interslice gap). The field of view
was typically 320 mm with spatial resolution of less than 1.5
mm (typically 1.43 mm). Each slice was acquired in a single
breath hold, with 22 temporal frames per cardiac cycle.

Second order Fourier series were used to fit the curvedness
signal in each region of each subject. Four Fourier coeffi-
cients, i.e., a1, a2, b1,b2, were obtained for each region.
The feature for each subject was a 1 by 64 vector. Both k-
means and fuzzy c-means clustering algorithms were applied
to the random ordered data. The clustering results from the
two algorithms were identical. The accuracy (the ratio of the
correctly clustered number to the total number) was 89%.
The Rand Index was 0.8075 and the adjusted Rand Index was
0.5374. Hubert’s index was 0.6149 and Mirkin’s index was
0.1925. All the evaluation on the clustering result indicate a
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high similarity of the clustered result to the gold standard.
In the fuzzy c-means algorithm, a membership level was

also assigned to each data entry, i.e., the confidence that
this data belongs to which clusters. The average membership
levels (AML) were computed for four groups in the table
of confusion as well. From a diagnosis context, the false
negative cases are usually fatal compared to the false positive
cases. Our experiments show a lower false negative rate
0.1176 than the false positive rate 0.1250.

IV. CONCLUSION

In this study, we proposed an approach to analyze the
left ventricular dynamics in terms of curvedness value.
The pipeline consisting of image processing, surface re-
construction, geometry analysis, and unsupervised learning,
was successfully performed on 66 subjects. High clustering
accuracy and other evaluation indices indicate the effective-
ness of the curvedness value for assisting diagnosis. Future
relevant work includes a more comprehensive analysis of
the relation between the geometric dynamics and various
medical conditions.
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C. Almerı́a, J. L. Rodrigo, J. Ferreirós, V. Serra, and C. Macaya,
“Comparison of left ventricular volumes and ejection fractions
measured by three-dimensional echocardiography versus by two-
dimensional echocardiography and cardiac magnetic resonance in
patients with various cardiomyopathies,” The American journal of
cardiology, vol. 95, no. 6, pp. 809–813, 2005.

[9] L. Zhong, D. N. Ghista, E. Y. Ng, S. T. Lim, T. S. Chua, and C. N.
Lee, “Left ventricular shape-based contractility index,” Journal of
biomechanics, vol. 39, no. 13, pp. 2397–2409, 2006.

[10] R. Semelka, E. Tomei, S. Wagner, J. Mayo, C. Kondo, J. Suzuki,
G. Caputo, and C. Higgins, “Normal left ventricular dimensions and
function: interstudy reproducibility of measurements with cine mr
imaging.” Radiology, vol. 174, no. 3, pp. 763–768, 1990.

[11] J. F. DEBATIN, S. N. NADEL, H. D. SOSTMAN, C. E. SPRITZER,
A. J. EVANS, and T. M. GRIST, “Magnetic resonance imaging-
cardiac ejection fraction measurements: phantom study comparing four
different methods,” Investigative radiology, vol. 27, no. 3, pp. 198–
203, 1992.

[12] P. Balzer, A. Furber, S. Delépine, F. Rouleau, F. Lethimonnier,
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