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Abstract— Motion compensation constitutes a challenging
issue in minimally invasive beating heart surgery. Since the zone
to be repaired has a dynamic behaviour, precision and surgeon’s
dexterity decrease. In order to solve this problem, various
proposals have been presented using `2-norm. However, as they
present some limitations in terms of robustness and efficiency,
motion compensation is still considered an open problem. In
this work, a solution based on the class of `1−Regularized
Optimization is proposed. It has been selected due to its
mathematical properties and practical benefits. In particular,
deformation is characterized by cubic B-splines since they offer
an excellent balance between computational cost and accuracy.
Moreover, due to the non-differentiability of the functional, the
logarithmic barrier function is used for generating a standard
optimization problem. Results have provided a very good trade-
off between accuracy and efficiency, indicating the potential of
the proposed approach and proving its stability even under
complex deformations.

I. INTRODUCTION

In the last years, minimally invasive beating heart surgery
has received much attention due to the well-known benefits
([1], [2]) that it can offer in contrast with traditional cardiac
procedures. However, since the heart is not stopped during
the operation, the surgeon has to deal with a dynamic
target in which two perturbations are acting: heartbeat and
breathing. They undertake the necessary precision surgery
and compromise surgeon’s dexterity. Therefore, a research
ambition is to compensate them so that surgeons can get the
feeling of working in a static area. The complexity of this
problem increases due to the small workspace, variable light,
heart characteristics (i.e. deformable, glossy surface) and the
real time requirements. In addition, there exists a hardware
limitation since the camera integrated in the endoscope is the
most practical sensor to be used due to the space constraint.
Due to all these difficulties, motion compensation in surgical
applications still remains an open problem [3].

To overcome the aforementioned difficulties Lemma et al.
[4] proposed a solution based on mechanical stabilization,
using small devices positioned over the heart, for keeping
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the region to be repaired in steady state. However, they
concluded that after mechanical stabilization there is sig-
nificant residual coronary artery motion. Thus, a feasible
solution is the use of Computer Vision Techniques (CVT).
In this context, the first proposal that uses CVT was due to
Nakamura et al. [5]. The authors introduced the concept of
heart synchronization and made use of artificial markers for
tracking the heart motion. Since the use of artificial markers
is not feasible due to the difficulty of putting them over the
heart surface, Ortmaier et al. [6] introduced the use of natural
markers. In that work an affine tracking was proposed and
simplified to a matching algorithm.

In [7] the problem of heart motion estimation was ad-
dressed in terms of displacement and acceleration by using
calibrated landmarks placed on the heart surface, and then
applying a texture based approach to avoid the use of such
landmarks. Additionally, in [8] a combination of thin-plate
splines and efficient second-order minimization were put
forward as solution to this problem. In [9] authors suggested
the combination of LK optical flow method and SURF
for features detection. In [10] a tracking based on feature
points was presented. These features were extracted via local
maxima of the intensity.

A common factor of previous solutions is the use of the
`2-norm. Motivated by the current limitations of existing
proposals and with the main objective to increase robustness
and efficiency, in this work we propose a solution based on
the `1-norm. Particulary, our proposal uses the class of `1-
Regularized Optimization. In here, explicit regularization is
employed in order to diminish the number of local minima,
deal with the ill-posed problem and stabilize the system.

This paper is organized as follows: In Section II the
presentation of the problem is tackled, the proposed solution
is described in Section III. In Section IV, the results are
presented, concluding with a discussion in Section V.

II. PROBLEM DESCRIPTION

For tackling the heart motion compensation problem, a
solution composed of four main modules is proposed. They
are represented in Fig. 1. Particulary, this work focuses on
the heart motion module (blue module). In here, the problem
is treated as an energy minimization, in which two images
are involved at each time instant; the reference image IF :
ΩIF → R, and the acquired image IA : ΩIA → R, where the
bounded domain is given by ΩIA,IB ∈Rd . Thus, the goal is to
find the transformation depending on the displacement field,
u, such that, IA(u)∼ IF . That is, the generalized problem is
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Fig. 1: Proposed scheme for heart motion compensation in a Robotic Surgical System.

described by

min
u

Et(u) = min
u
{Ed(IA(u(x)+ x), IF(x))+ γEr(u(x))} (1)

where Et is the total energy, Ed is the dissimilarity functional
that allows measuring the level of alignment between the
two images, and Er represents the regularization term used
to obtain a plausible transformation. Moreover, γ offers a
balance between Ed and Er, and x is a vector in Rd .

III. PROPOSED SOLUTION

In this section, the proposed solution for Eq. 1 is ex-
plained. It is based on the `1-Regularized Optimization Class.
It has been chosen due to its mathematical properties that
provide good practical results. To our best knowledge this
class has not been tested for solving this problem.

A. Parametrization of the Displacement Field

In order to describe heart motion, it is necessary to select
an adequate deformation model. Although there are different
options, for this application, it has to be carefully selected
since it is a real-time oriented problem, in consequence,
short computational time and valuable information are highly
desired [11]. Specially, in medical applications well-known
models such as radial basis functions, elastic body, viscous
fluid flow or statistical deformation models have been used.
However, they have various drawbacks such as inverse incon-
sistency, lack of mathematical optimality, high computational
cost or lack of efficiency dealing with complex deformations.
Because these factors, cubic B-splines (free-forms) have been
selected. They demand low running time, are easy to ma-
nipulate, allow multiresolution, have optimal mathematical
properties and the capacity of keeping affine invariance [12].

The idea is to define a region of interest, rint ⊂ Ω,
delimited by a lattice, and describe the deformation in rint
via repercussion of each lattice point. Defining P as the set
of control points, the displacement field is described by the
following parametric domain

u(x) =
n

∑
j1=0

...
n

∑
jd=0

P j1,..., jd

d

∏
l=1

βl(ul) : {u ∈ Rd(rint)}

=
3

∑
l=0

3

∑
m=0

βl(µ)βm(v)Pi+l, j+m : {u ∈ R2(rint)}
(2)

with b-splines of degree n and d-dimensions; βl and βm are
basis function defined as

β0(µ) = (1−µ)3/6 , β1(µ) = (4+3µ
3−6µ

2)/6

β2(µ) = (1−3µ
3−3µ

2 +3µ)/6 , β3(µ) = µ
3/6 (3)

B. Solution Description

To solve Eq. 1, firstly, it is necessary to evaluate the
discrepancy between the two images. Although different
methods can be considered, the selection of the most ad-
equate depends on the problem to be solved. In here, since
the images are acquired by the same sensor, big intensity
variations between them are not expected. Therefore, an
iconic method is a perfect match for this application. In
particular, to reformulate Ed , the Sum of Absolute Differ-
ences (SAD) method has been selected for its simplicity, low
computational time working in real-time, and robustness in
front of variation of intensities and outliers.

Secondly, as undesirable mathematical properties appear,
they lead us to deal with an ill-posed problem. This kind of
problem is characterized by the fact that it does not fulfill the
Hadamards postulate [13], which asserts that a well-posed
problem must satisfy three main requirements: i) existence,
ii) uniqueness and iii) continuity. Thus, it is necessary to
define the penalization term, Er, in order to impose stability
to the solution and decrease the number of local minima.

There are different options for Er such as the classic
method called Tikhonov, the Mumford and Shah model,
curvature, among others. However, some problems such as
lack of edge preservation, complex analysis or negative
practical results lead us to select the method proposed by
Rudin et al. called Total Variation (TV) [14]. It has been
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chosen due to its performance in edge preservation, its easy
interpretation and analysis, and its short computational time.
Reformulating Eq. 1 using both TV and SAD methods, the
above functional becomes

Et(u) =
1
2

∫
Ω

|IA(u(x)+ x)− IF(x)|dx︸ ︷︷ ︸
Ed

+γ

n

∑
d=1

∫
Ω

|∇ud(x)|dx︸ ︷︷ ︸
Er

(4)
where ∇u = ( ∂u

∂x1
, ∂u

∂x2
. . . ∂u

∂xN
).

C. The Discretize-Optimize Approach

From a practical point of view and efficiency, in this work
the discretize-then-optimize methodology is used. Strictly
speaking, taking original continuous functional from Eq. 4,
it is rewritten by a discretization in order to obtain a standard
optimization problem. Despite all desired mathematical and
practical properties of the `1− class, the main challenge for
solving Eq. 4 relies on its nondifferentiability, which hin-
ders the optimization process. To handle this inconvenience,
different alternatives can be followed, such as: subgradi-
ent and subderivatives methods, rewrite this problem as a
constraint optimization or substitute the original functional
by a differentiable approximation. The first two alternatives
tend to have a slow convergence, sometimes need infinite
iterations (get stuck) or demand large computational time.
Due to the above factors, in this work Eq. 4 is reformulated
by a differentiable approximation using a barrier method. In
particular, the use of the logarithmic barrier function is used.
Let flog be the logarithmic-barrier expressed by

flog(u) =−ϕ ∑
x∈Ω

logcx(u){
u ∈ Rd |cx(u)> 0 for all x ∈Ω

} (5)

where log(·) is the natural logarithm, ϕ+ the barrier pa-
rameter that determines the impact over the function. Thus,
the idea is to add flog to the functional to be minimized in
order to avoid any variable moving too close to the boundary
(i.e. to zero), in consequence, it becomes a problem which
can be solved using standard unconstraint methods. Thus,
approximating Eq. 4 via discrete sum and adding flog from
Eq. 5, the problem to be minimized becomes

Edi f f (u;ϕ) = {Ed(u)+ γEr(u)−ϕflog(u)}

=


1
2 ∑

x∈Ω

|IA(u(x)+ x)− IF(x)|︸ ︷︷ ︸
Ed

+γ

2

∑
d=1

∑
x∈Ω

|∇ud(x)|︸ ︷︷ ︸
Er

−ϕ ∑
x∈Ω

logcx(u)︸ ︷︷ ︸
flog



(6)

Although there are different ways to discretize the ∇u ∈ R2

operator. In here, it is used as follows. Let Rint ∈Ω be formed

Fig. 2: After taking original sequence, (A) to (D), specular
highlights are detected, (A.1) to (D.1), and the inpainting,
(A.2) to (D.2), is carried out in order to retrieve the missing
information.

Fig. 3: Graphic of the displacement field obtained from the
zone to be repaired. This zone is defined by the surgeon
when the algorithm starts.

by N ∗N pixels with i, j positions, then, ∇u(x) = ui+1, j −
ui, j || ∇u(x) = ui, j+1− ui, j when N < i || N < j, otherwise
(N = i || N = j) ∇u = 0. It must also be said that cx(u) = u2.
Using the differentiable approximation expressed in Eq. 6,
minimization is carried out using Newton’s Method using

∇Edi f f (u;ϕ) = ∇Et(u)− ∑
x∈Ω

ϕ

cx(u)
∇cx(u)

∇
2Edi f f (u;ϕ) = ∇

2Et(u)+ϕ ∑
x∈Ω

[
1

cx(u)
∇cx(u)∇cx(u)T

− 1
cx(u)

∇
2cx(u)

]
(7)

Although various unconstraint methods can be used in
combination with the log barrier, Newton’s method can
deal with the ill-conditioned problem given by the ∇2Edi f f .
Additionally, using it, fast convergence can be ensured.

IV. EXPERIMENTAL RESULTS
For validating the approach defined in Section III, simu-

lated experimentations were conducted using a realistic data
set (from The Hamlyn Centre [15]) of the heart surface
affected by the respiration and the heart beat. This sequence
has a duration of 60.2 sec. Tests were carried out using a PC
intel Core i7-8GB RAM, and Nvidia GeForce GT 540M.

It is worth noting that specular highlights have been kept
in mind in order to avoid: decreasing available information;
and creating large intensity differences that produce error
in the algorithm. Although the process is not explained in
this work because it is not the aim, it must be emphasized
that besides detection and elimination of specular highlights,
image information was retrieved via inpainting (see Fig. 2).

At the beginning of the approach, identification of the
region to be repaired is required (Fig. 3). Then, this region
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Fig. 4: Behaviour of the approach for different instants of
the heart cycle using different lattice sizes. From upper row
to lower row: N = 4, N = 6 and N = 7.

is delimited by a grid with N ∗N control points (lattice). In
this case, experimentations were carried out using different
values for N. However, in order to appreciate the effect of
increasing N, values of N = 4,6 and 7 were used. Results of
part of the image sequence can be seen in Fig. 4 where the
grid is changing with the deformation of the heart surface.
In addition, the displacements, in X− Y− coordinates, of a
point of interest to be repaired is depicted in Fig.5 during the
complete sequence. As can be appreciated the more points
the better approximation is obtained.

In order to validate the performance of the proposed
approach, and select the best value for N, three main factors
have been taken into account: Computational cost (average
time per frame in sec.), number of iterations (average number
per frame) and accuracy (average error in mm). Since a
trade-off between efficiency and accuracy is desired and after
analyzing the results of Table I, the value of N=6 has been
selected. This result can be compared with the state of the
art (e.g. [9], [15]).

TABLE I: Performance Analysis

#Control Points Avg. Time Avg. #Iterations Avg. Error
(N*N) per Frame [sec] per Frame [mm]

4 0.0035 15 0.1491
6 0.0054 15 0.0987
7 0.0073 18 0.0904

V. CONCLUSIONS
In this work, the regularized version of the class `1− was

used in order to solve the motion compensation problem in
the cardiac context. Based on the results obtained from the
experimentation, this approach has demonstrated its potential
in terms of efficiency and robustness working under complex
deformations. Moreover, it has covered the computational
demands of an application oriented to work in real-time.
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Fig. 5: Plots of the displacement are obtained from a point of
interest, in both coordinates x and y, during the heart motion
using different number of control points (N ∗N).
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