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Abstract— Although being small compared to inertial acceler-
ation, viscous component of the pressure gradient has recently
emerged as a potential biomarker for aortic disease conditions
including aortic valve stenosis. However, as it involves the
computation of second order derivatives and viscous dissipation
is locally higher in the near-wall region of the larger vessels,
where the lowest local signal-to-noise ratios are encountered, the
estimation process from medical image velocity data through
mathematical models is highly challenging. We propose a fully
automatic framework to recover the laminar viscous pressure
gradient through reconstruction of the velocity vector field in
the aortic boundary region. An in-silico study is conducted
and the pressure drop is computed solving a Poisson problem
on pressure using both a reconstructed and non-reconstructed
velocity profile near the vessel walls, showing a global improve-
ment of performance with the enhanced method.

I. INTRODUCTION

Aortic valve stenosis (AVS) is a common cardiovascular
disease in the Western world, with an alarming average
of less than 4 years survival without intervention [1]. In
moderate-to-severe AVS, calcification due to age or con-
genital factors may lead to inefficient opening of the aortic
valve and partial obstruction of the outflow. In this condition
heart workload during systolic phase is therefore increased
and the left ventricular (LV) compartment may undergo fatal
failure. Transvalvular pressure gradient has a key role in the
assessment of AVS severity, helping in the management of
patients that are candidates to receive surgical repair [3], [7].

Gold standard for pressure measurement is catheterization,
which however is an invasive procedure and inevitably con-
taminated by the physical presence of the catheter [4], [13].
In the last decades, non-invasive pressure estimation methods
using medical imaging have been proposed. Specifically,
four-dimensional (time-resolved 3D) flow phase-contrast
magnetic resonance imaging (PC-MRI) data provides an
enhanced description of the hemodynamics and flow patterns
in the vasculature, and mathematical models have been used
to derive pressure from the acquired flow field [2], [5].

In this context the Poisson pressure equation (PPE) for-
mulation is commonly used [6], [8], [11], as it minimizes
the issues of high sensitivity to boundary conditions with
the Navier-Stokes’ equations original form. More recently
a finite-element method (FEM) to the solution of the PPE
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described in [8] has shown that, if incompressibility is en-
forced, the weak form of the equation is reduced to a simple
balance between volume integrals, thus completely removing
the boundary conditions on pressure gradient, which are not
readily available. This development is critical for a reliable
estimation of viscous component of pressure, with the first
results reported in [9].

Nevertheless, the challenges in the computation of viscous
pressure have not been properly addressed. The laminar
viscous effects are higher in the near-wall region, and
computations of pressure are commonly performed only in
the central part of the lumen, where the inertial effects
predominate [8]. Therefore, major viscous effects happening
at the vessel boundary are not captured with a mesh that does
not include this part of the domain. Additionally, flow data at
the boundary region shows characteristics that compromise
the computation of relative pressure, like a low signal-to-
noise ratio (SNR), low spatial resolution, and partial volume
effects.

In this study we propose a finite-element approach to
PPE to compute the laminar viscous pressure drop from
PC-MRI data. Our motivation is the hypothesis that viscous
effects represent a potential biomarker to stratify disease, as
mechanical energy dissipation reflects directly inefficiencies
of the heart pumping mechanism. The method achieves the
integration of the boundary region by an automatic fitting of
a smooth tubular computational mesh to the segmentation
domain. Low-SNR and data issues are addressed by the
reconstruction of the velocity profile via a Stokes-driven
degrees of freedom repopulation in the near-wall region. We
then investigate the requirements of segmentation accuracy
of the input PC-MRI data, and the impact of different levels
of SNR to the solution.

II. METHODS AND MATERIALS

The method for the estimation of relative pressure consists
of three main steps: (A) generation of the computational
mesh, (B) near-wall velocity reconstruction, and (C) pressure
estimation, as described in the following subsections. The
performance is evaluated in an in-silico dataset, where the
proposed enhanced method is compared to a direct computa-
tion (without velocity reconstruction) from (D) PC-MRI data
synthetized with different levels of SNR.

A. Generation of the computational mesh

The computational mesh is generated by (1) an automatic
thresholding segmentation of the velocity magnitude image,
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(2) the construction of a suitable mesh template with user-
defined topology, and (3) a warping process of the tem-
plate to the segmentation domain by an image-registration
solution. In the design of the template, the mesh topology
is chosen as a cylinder with concentric layers of elements
in order to allow the definition of the boundary region as
a subset of layers of elements. Second-order hexahedral
elements are chosen in the FEM discretization. Higher res-
olution is imposed in the near-wall region, while in the
inner core region nodes coarseness is acceptable. The mesh
personalization algorithm recently proposed by Lamata et. al
[10] is adapted to this problem, and achieves the fitting of
the template into the segmentation domain with sub-voxel
accuracy.

Reconstruction of the velocity field is performed in the
near-wall region solely. Therefore, the computational mesh
is divided in two regions, corresponding to a trusted high-
SNR and an untrusted low-SNR region (near-wall). A choice
of a number of 8 computational elements in the transmural
direction, corresponding to ≈ 25% of the lumen diameter, is
fixed in this study.

B. Near-wall velocity reconstruction

At this point, a domain separation is performed, based on
the local SNR level, which is high in the core region of
the flow field (where mean velocity is high) and is low at
the boundaries, where a clear distinction between true signal
and noise is difficult to assess. Based on that, hexahedral
elements are labelled either as part of the core or bore region.
Image registration allows for the interpolation of velocity
from the PC-MRI on the boundary nodes of the bore region.
A cubic interpolation scheme is chosen to define velocity at
the required nodes of the warped mesh through the MATLAB
build-in function interp3. This is necessary to define the
boundary conditions on the internal boundary nodes in order
to solve for velocity in the near-wall region on a finer grid.
External nodes velocity values are set to 0, while boundary
conditions on inlet and outlet nodes for the warped mesh
are provided in the form of a force constraint. A Lagrange
multiplier approach is adopted here, forcing velocity on
those nodes to match data-derived velocity depending on the
relaxation factor k. Higher values for this parameter imply
stronger constraint of the velocity boundary conditions at the
inlet/outlet of the warped mesh. Velocity reconstruction is
obtained through solution of a Stokes’ problem in this region,
defined assuming viscous forces predominant on convective
forces.

C. Pressure estimation

The estimation of relative pressure is performed following
the methodology described in [8]. Pressure gradient is the
response of a fluid system to inertial and viscous stresses
and volume forces. Inertial effects are driven by acceleration
due to the pulsatile nature of the blood flow and accel-
eration due to the morphology of the vasculature, which
are respectively known as transient and convective acceler-
ation. Viscous effects account for the mechanical dissipation

that flow experiences because of laminar friction between
neighbouring laminae, consequently being strictly related
to inefficiency of the heart pump. Volume forces englobe
gravitational acceleration and can be therefore neglected in
this context. Navier-Stokes’ system of equations provides an
accurate description of this force balance,

−∇p =

inertial︷ ︸︸ ︷
ρ
∂u

∂t︸︷︷︸
transient

+ ρ (u · ∇)u︸ ︷︷ ︸
convective

+ µ∆u︸ ︷︷ ︸
viscous

+ f︸︷︷︸
volume

. (1)

PPE is derived taking the divergence of the right-hand and
left-hand side, thus simplifying the force balance to,

∆p = ∇ · b, (2)

where the laplacian of pressure is now an explicit function of
the velocity field derived from the image domain, enclosed
in the divergence of the source term b,

b = µ∆u− ρ
(
∂u

∂t
+ (u · ∇)u

)
. (3)

Transformation into the weak form reduces the PPE to a
balance between volume integrals, with boundary conditions
on pressure gradients being removed if incompressibility is
assumed, ∫

Ω

∇p · ∇q dΩ =

∫
Ω

b · ∇q dΩ, (4)

where the test function q ∈ H1(Ω) is introduced. Then, a
Galerkin approach is used to discretize the equation and the
finite-element implementation is performed using quadratic
Lagrangian basis functions, to allow second derivatives to be
captured correctly.

The method we propose is aimed at improving the com-
putation of the laminar viscous pressure gradient. Therefore,
in the following we refer to pressure gradient as driven by
the viscous stress solely, thus reducing the source term to,

∆pviscous = ∇ · µ∆u. (5)

We compare the Stokes-enhanced PPE (SePPE) approach
with a direct computation from PC-MRI data (DPPE) in
terms of the pressure gradient percentage relative error
defined as,

εpg =

pinlet − poutlet
L

− pgHP
pgHP

× 100. (6)

Here, the pressure gradient is defined as the ratio between
the difference of inlet and outlet mean pressures over the
approximate length of the fitted geometry L and pgHP is the
analytic pressure gradient from the Hagen-Poiseuille theory.
We investigate the sensitivity of the method to the detected
lumen, defining the lumen detection error,

εφ =
φ− φtrue
φtrue

× 100, (7)

where the true lumen φtrue and the computed lumen φ are
defined respectively as the radius of the analytic pipe and
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the average of radii estimates resulting from a circle-fitting
procedure operated at each cross-section of the fitted mesh.
We assess the accuracy of the method as a function of the
amount of trusted data from the image domain, defining the
Trusted Data Index (TDI) as the ratio between the radius
of the core region (high local SNR, thus reliable data from
image) and the computed lumen,

TDI =
Rtrusted

φ
. (8)

A brief schematic of the basics behind the SePPE method
is presented in Fig. 1. For the sake of completeness, a
comparison between typical velocity profiles obtained using
a DPPE and a SePPE approach following image-driven mesh
personalization is shown in Fig. 2.

D. Test data: synthesis of PC-MRI data

PC-MRI data acquisition is reproduced in order to have
full control of the noise level. An analytic 3D Hagen-
Poiseuille flow in a cylindrical straight pipe, where an
analytic ground truth solution is available for the pressure
distribution, is chosen for the study. Simulated Gaussian
noise in physiological range is added at the stage of mim-
icking the image acquisition, having the control parameter
SNR defined as,

SNR =
µ

σ
,

where µ is the mean value of the flow field velocity mag-
nitude and σ the standard deviation of the noise. Automatic
segmentation of the output image is allowed by a threshold-
ing criterion on the voxels’ velocity magnitude vS .

III. RESULTS

(i) Preliminary validation on boundary parameters

We performed preliminary tests to assess the impact of
two crucial factors in the set up of the near-wall velocity
reconstruction problem: the image data reliability and the
boundary region width, respectively set by the relaxation
constant k and TDI. Results showed low sensitivity of the
pressure gradient relative error to k. Higher accuracy was

Template generation

Velocity reconstruction

Image generation

Image segmentation

vS

Mesh personalization

k TDI

SNR

PPE pressure estimation

SePPE DPPE

Fig. 1. Workflow from mesh personalization over near-wall velocity
reconstruction to viscous relative pressure estimation. Image personalization
parameters (dark grey background) and SePPE parameters (black back-
ground).

Fig. 2. Schematics of the velocity reconstruction process. Mesh fitting
to segmented image with trusted/untrusted region separation (a). In plane
velocity profile without velocity reconstruction (DPPE) and with velocity
reconstruction (SePPE) (b).

however achieved with k in the range
[
101 − 105

]
, which

translates into weaker boundary conditions for the inlet/outlet
nodes’ velocity. Therefore, k = 103 was used for the
remainder of the study. Representative tests were performed
with different amount of SNR within the physiological
range [5− 15]. As expected, SePPE performed better with
decreasing TDI, showing a monotonically decreasing εpg
as the trusted region from the image domain was reduced.
Subsequently, we assessed the performance of SePPE against
DPPE method as a function of the computed lumen φ.

(ii) Sensitivity of the pressure gradient to computed lumen

Fig. 3 illustrates that SePPE outperforms DPPE throughout
all the detected lumens considered. For both methods, an
underestimation of vessel diameter introduces an amplifi-
cation of the pressure gradient, and vice-versa. A direct
computation of velocity gradients relying solely on the data,
without reconstruction of the boundary layer, causes an
underestimation of the pressure gradient. Pressure drop is
captured with good accuracy with the SePPE approach if
−2.5% < εφ < 2.5% (≈ 15% vs ≈ −45% in cases
where lumen is underestimated, ≈ 5% vs ≈ 50% if over-
estimated). Performance of the method is again acceptable
with moderate-to-high lumen overestimation (≈ 20% and
≈ 40%). Finally, the accuracy of both methods slightly
drops when the true lumen is moderately underestimated,
with SePPE overestimating the pressure gradient and DPPE
underestimating it.

(iii) Sensitivity of the pressure gradient to SNR and vS

Both methods were applied to the reconstructed geometry of
the analytic in-silico pipe, assigning a fixed TDI ≈ 0.5.
The combined effects of SNR and vS were analyzed, to
investigate the strong impact they have on the image domain
generation and in turn on the pressure solution. SNR was
varied again in the range [5− 15], along with the vS in the
range [5%− 15%] of the analytically defined peak velocity.
Every test was run 20 times and relative error was averaged
to avoid random noise variability of results.

The pressure drop relative error provided by the SePPE
approach is considerably lower than the DPPE one, when
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physiologically relevant noise and segmentation threshold
are considered (highlighted by rectangle in red, Fig. 4).
Both methods perform poorly in case of high level of noise,
whereas for the highest SNR proposed both methods are
consistently accurate.

IV. DISCUSSION
We have proposed an automatic method to recover the

laminar viscous pressure drop, and shown that the recon-
struction of velocity fields in the boundary layer improves
the results.

Laminar viscous dissipation is greatest at the boundary of
the lumen, and this is where the SNR is worse in PC-MRI
data. Results illustrate how the boundary layer reconstruction
reduces the error in viscous pressure computation irrespective
of the lumen segmentation error (Fig. 3). This study also
highlights the requirement of segmentation errors less than
a 2.5% in the estimation of lumen diameter in order to
have an accurate laminar viscous pressure estimation (error
< 15%). Note that acquisitions typically have 8 to 9 voxels
across the diameter of the aorta, and therefore there is a need
of sub-voxel accuracy in lumen segmentation. This level of
segmentation accuracy, also accounting for the displacement
of the aorta, has been reported to be possible using implicit
geometric models [12]. Results also illustrate that the method
is robust to the choice of the relaxation constant needed for
the reconstruction of the velocity field, and that different
levels of SNR will introduce different optimal choices of the
threshold to define the domain of computation.

The main limitation of this study lies in the hypothesized
Hagen-Poiseuille velocity profile imposed in the in-silico
model, which is not representative of physiological aortic
flows. More specifically, this flow regime neglects the inertial
effects of blood. Future works will address this issue by the
simulation of the complete Navier-Stokes equations for the
reconstruction of the boundary layer.

Fig. 3. Pressure gradient relative error for SePPE (blue) and DPPE (red)
method. Moderate (case 1) and slight (case 2) lumen underestimation, slight
(case 3), moderate (case 4) and high (case 5) lumen overestimation.

Fig. 4. Greyscale image of the absolute value of pressure gradient relative
error as a function of vS and SNR for SePPE (a) and DPPE (b).

In conclusion, we developed and tested a fully automatic
method for a more reliable estimation of the laminar viscous
pressure drop across systemic vessels from PC-MRI data.
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