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Abstract— Surface Electromyography (EMG) is popularly
used to decode human motion intention for robot movement
control. Traditional motion decoding method uses pattern
recognition to provide binary control command which can only
move the robot as predefined limited patterns. In this work,
we proposed a motion decoding method which can accurately
estimate 3-dimensional (3-D) continuous upper limb motion
only from multi-channel EMG signals. In order to prevent the
muscle activities from motion artifacts and muscle crosstalk
which especially obviously exist in upper limb motion, the
independent component analysis (ICA) was applied to extract
the independent source EMG signals. The motion data was
also transferred from 4-manifold to 2-manifold by the principle
component analysis (PCA). A hidden Markov model (HMM)
was proposed to decode the motion from the EMG signals after
the model trained by an adaptive model identification process.
Experimental data were used to train the decoding model and
validate the motion decoding performance. By comparing the
decoded motion with the measured motion, it is found that the
proposed motion decoding strategy was feasible to decode 3-D
continuous motion from EMG signals.

I. INTRODUCTION

Human-machine interface is important in human-centered
robot operation, such as service robot and rehabilitation
robot. In order to achieve accurate and natural robot move-
ment, more and more research attempts to decode the user’s
movement intention to provide sufficient control command,
and to guarantee the user’s safety. In most conventional stud-
ies, binary command (on-off) were given to the robot, mainly
through pattern recognition methods. Accordingly, the robot
was triggered to move in a predefined manner. As described
in [1], such decoding strategy is far from the intuitive control
strategy in human motor control system, while continuous
motion decoding is a viable solution generating intuitive
motion control. Therefore, this work proposed a continuous
joint motion estimation method from the muscle electric
behaviors.

Upper limb movement is quite functional and important in
human daily life, so this work focuses on the motion decod-
ing of shoulder and elbow from multiple muscles eliciting
such motions. Arm movement is a result of complex motion
combination of multiple muscles. Muscle activities can be
conveniently recorded using non-invasive electromyography
(EMG) configuration, so called surface EMG (sEMG). The
SEMG is a spatial and temporal summation of the action
potentials generated by a number of motor units. It represents
asynchronous properties with overlapping actions potentials
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generated in each muscle unit. We have attempted con-
tinuous motion decoding from a pair of agonist/antagonist
muscles, but limited to decode single elbow flexion/extension
[2]. Dario et al have deeply researched in proportional
and continuous EMG decoding of 3-D wrist motions [3].
Artemiadis et al have done a series of work on EMG-based
upper limb motion decoding for the tele-operation of robotic
arm and achieved interesting performance [4][5]. Inspired
by the concept of motion synergy and muscle synergy,
they proposed to transfer both the joint motions and EMG
signals from high-dimensional space into low-dimensional
space through a dimension reduction technique, principle
component analysis (PCA), and then decode joint motions
from EMG in the low-dimension space. However, the non-
stationarity, subject-specificity and crosstalk characteristics
of EMG recordings are still unsolved problems [6].

As most of the muscles are combined into group or
overlapped with each other even though they are structurally
and/or functionally independent in anatomy, it is difficult in
practice even to accurately locate recording electrodes on
the muscles of our interest. As a result, the recorded multi-
channel EMG signals are not only contaminated by kinds of
internal and external noises but also mixed with adjacent
muscle activities. Moreover, the problem of crosstalk is
especially unavoidable when recording EMG signals from
the bundles of muscles activating arm movement. Thereafter,
we suppose it is possible to separate the EMG signals from
various artifacts and this is helpful to improve the motion
decoding accuracy. This technique is to resolve a blind source
separation (BSS) problem. Independent component analysis
(ICA) [7] is a typical BSS technique able to estimate the
statistically independent source signals from their combina-
tions. We proposed to combine the technique of ICA and
adaptive model training method in order to make the EMG
decoding more practically feasible in the presence of various
artifacts in EMG recordings.

II. METHODS

This work consists of three parts: data acquisition and
processing, motion decoding modeling and motion decoding
estimation. Experimental data were used for model training
and estimation validation.

A. Data acquisition and processing

As we focused on the shoulder and elbow motion in the
3-D space, the motion data and EMG data during performing
drinking motion in seat situation were collected, as shown in

5068



Fig. 1. Three rotational DoFs at shoulder joint and one rota-
tional DoF at elbow were calculated by the marker position
through a motion capture system (Vicon F20-MX3, Vicon
Motion Systems Ltd, Oxford, UK) based on a kinematic
model [8]. EMG signals were acquired from 6 muscles by
an EMG acquisition system (Mega6000, Mega Electronics
Ltd, Kuopio, Finland). The arm motion shown in Fig. 1 was
repeated 10 times in order to have enough samples for model
training and validation.

The reflective markers of motion capture system were
placed according to the definition of a joint coordinate system
[9]. The motion recording was sampled at 50 Hz. Six channel
of EMG electrodes were respectively placed on the six
predominant muscles which activate the above four DoFs,
that is, Biceps, Triceps, Trapezius, Deltoid posterior, Deltoid
anterior and teres major muscles. The EMG signals were
amplified (gain 305) and sampled at 1KHz. EMG recordings
were synchronized with the motions by the Vicon motion
capture system.
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Fig. 1. Tllustration of the experiment setup. A round trip of one motion
sequence was shown.

Both the EMG and motion data were saved in a computer
and treated off-line in Matlab (The MathWorks, Version
7.10.0.499, 64-bit, 2010). The EMG signals were first low-
pass filtered (Butterworth, 6th order, cutoff frequency 300
Hz). And then a Fast independent component analysis (Fas-
tICA) [10] was applied for separating the muscle activities
of our interest from various artifacts and noises. FastICA
is also called fixed-point ICA which is one of the ICA
algorithm families and can be obtained by different ways. A
FastICA algorithm based on negative entropy maximization
was adopted in this study due to its advantages such as
fast convergency and robustness [7]. As we know, ICA
works under the hypothesis that the original signals are
linearly mixed and have non-Gaussian distribution. In this
study, although EMG signals usually have super-Gaussian
or Gaussian distributions in different activation levels [11],
the artifacts like crosstalks and motion artifacts, have non-
Gaussian distribution [12]. Moreover, we preprocessed the
EMG signals via PCA before performing ICA in order to
discard irrelevant structures and satisfy the hypothesis of ICA
algorithm.

After performing the PCA, the dimension of the EMG
signals was reduced from six to three representing more
than 92% of the total variance. Independent information was
subsequently obtained via FastICA from the three princi-
ple components. The recorded multi-channel EMG signals
(shown in Fig. 2) have some motion artifacts and noises
especially in Biceps, Triceps and Deltoid posterior when

arm returned to the initial position. In comparison, the
components after FastICA shown in Fig 3 are more clean and
represent close relation with the intuitive repeated motion.

In the next step, EMG features were extracted from
the three independent components. Several time-domain
and frequency-domain features were calculated and used
to validate the performance of motion decoding. We found
that mean absolute value (MAV) was able to provide good
decoding results, and multiple features did not significantly
improve the decoding accuracy. Thus, only MAV of the three
components (shown in Fig. 3) was calculated every 10 ms
within 15 ms-analysis window and applied to decode the arm
motion in this work.
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Fig. 2. EMG signals recorded from six dominant muscles activating
shoulder and elbow motions in drinking movement. Five repeated motion
sequences were shown here. The vertical horizon was unified within [-0.03,
0.03] mV. The muscles are respectively Biceps, Triceps, Trapezius, Deltoid
anterior, Deltoid posterior and Teres major (listed from left to right and then
from top to bottom).

For the motion data, the four joint angles were firstly
calculated by the recorded marker positions based on the
upper limb kinematic model [8]. And then the joint motion
dimension was reduced from four manifold to two by PCA
technique, with the two principle components describing
98.6% of the total variance. Until now, we obtained the EMG
features and joint angles in lower-dimension to be the input
and output respectively of the motion decoding model.

e
g

Fig. 3.  The independent components were obtained by the FastICA
following a PCA preprocessing. They were applied for motion decoding
in a lower-dimensional space.

B. Model structure

In order to to map the low-dimensional EMG features
to the motion data, a Hidden Markov Model (HMM) was
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proposed as below:
x(k) =A(k)x(k—-1)+B(k)ulk —1)+w(k) (1)
y(k) =C(k)x(k) + v (k) 2)

where the previous state x(k—1) is transferred to the current
state x(k) by a transfer matrix A (k) € R7*?, Matrix u(k —
1) € R™*! contains the previous model inputs which are
known at each current step. Matrix B(k) € R7%™ relates the
previous model input u(k — 1) to the current state x(k). The
measurement model relies on the state element x(k) as in (2).
The w(k) in (1) and v(k) in (2) are respectively Gaussian
white noise of the system model and the measurement sensor.
All the states in x and the model coefficients contained in
matrices A and B are combined into coefficient vector ® and
will be determined during the next model training process.

C. Model training

It is well known that the EMG signals have non-stationary
property such that the motion decoding mapping can be
considered as a time-variant system. In order to train the
time-variant system, a Kalman filter (KF) with fading factor
was previously proposed to adaptively identify joint torque
from EMG during isometric muscle contraction [13][14]
and decode single joint angle from EMG during dynamic
muscle contraction [2]. This method was also applied in this
study to estimate the joint angle from EMG which provided
more accurate training results comparing with non-adaptive
methods. The recursive algorithm of KF consists of two
phases, prediction and correction.

In the prediction phase, the system is assumed to be
stationary, the a priori state estimate at instant k, @~ (k),
is calculated from the a posteriori state at previous instant
k-1, (:-)(k— 1), according to (3). The estimate error covariance
P (k) is propagated according to (4).

O (k) =F(©(k —1),u(k —1),0) 3)
P~ (k) = D(k)P(k — 1)D" (k)/A )

where D (k) is the Jacobian matrix of the partial derivations
of the process transfer function F with respect to the vari-
ables involved in ©.

In the correction phase, K (k) in (5) is called as KF gain
that minimizes the a posteriori error covariance,

K (k) = P~ (k)/H” (k) (H(HP~ (WH (k) + ) ()

where )\ is a fading factor allowing to neglect some old
measurements for enhancing the training performance. The
choice of A must consider a tradeoff between tracking
smoothness and accuracy, which is fixed at 0.997 as in our
previous works [13][14]. H(k) is the Jacobian matrix of the
partial derivations of the sensor transfer function G with
respect to ©.

O(k) = O~ (k) + K(k)(y(k) - G(©~(k),0))  (6)
P(k) = (I - K(k)H(K))P~ (k) @)

When the actual measurement y(k) is available, an a
posteriori state estimate is generated by incorporating the

measurement as in (6). An a posteriori error covariance
estimate is obtained via equation (7).

III. RESULTS

To evaluate the proposed 3-D continuous motion decoding
method, the experimental data were used to train the decod-
ing model and validate the decoding performance. Firstly, in
the signal processing step, the recorded EMG signals were
processed by a PCA and FastICA technique resulting in three
independent components. The EMG features were extracted
from the three components. The joint angles were calculated
from the motion capture systems based on the upper limb
kinematic model. The joint angles were also reduced by PCA
resulting in two-manifold motion space. Next, in the model
training step, the three EMG features and the two angle
components were respectively treated as the input and output
of the EMG-based motion decoding model. The model was
then trained by an adaptive KF using a part of experimental
data. Last, in the cross-validation step, the rest experimental
data were used to validate the motion decoding performance
of the proposed method. Now, we got 2-D joint angles from
the EMG signals and the trained decoding model. It is easy
to calculate the joint angles in original 4-D space from the
2-D joint angles using principle components as presented in
[5].

Fig. 4 shows the model training performance with the
adaptive Kalman filter. The blue lines are the ground truth
of the 4-DoF joint angles and the red are the trained angles
using the proposed decoding model and model training
method. Although 3-D arm motions include multiple muscles
and multiple joints coordinating the muscle contractions and
joint movements, the decoding model and the model training
can still work well to provide good model training perfor-
mance. Especially, the training model was used to decode the
joint angles only using EMG signals. The estimated 4-DoF
joint angles from EMG are shown in Fig. 5. We can find
that the decoded joint angles are quite close to the ground
truth. Considering the difficulties and status of continuous
motion decoding only from EMG signals, this results indicate
the feasibilities and effectiveness of the proposed motion
decoding approach in 3-D motion decoding from multiple
EMG signals.

IV. CONCLUSIONS AND PERSPECTIVES

EMG signals are popularly used to decode human motion
intention for robot movement control. Traditional motion
decoding method uses pattern recognition to provide bi-
nary control command which can only move the robot in
a predefined pattern. Moreover, few works have achieved
significant progress in upper limb motion decoding in 3-
D space other than those in 2-D space. In this work, we
proposed a motion decoding method which can accurately
estimate 3-dimensional continuous upper limb motion only
from multi-channel EMG signals. In order to prevent the
muscle activities of interest from motion artifacts and muscle
crosstalks which especially obviously exist in the upper limb
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Fig. 4. Model training results. Blue: joint angle ground truth, red:
estimated joint angle. From top to bottom: shoulder flexion/extension,
shoulder abduction/adduction, shoulder rotation and elbow flexion/exension

motion, the FastICA was applied to extract the indepen-
dent source EMG signals following a PCA-based signal
preprocessing. The motion data was also changed from 4-
manifold into 2-manifold by a PCA technique. A HMM was
applied to decode the motion from the EMG signals after
the model being trained by an adaptive model identification
process. Experimental data were used to train the decoding
model and validate the motion decoding performance. By
comparing the decoded motion with the calculated motion
from motion capture system, it is feasible to use our method
to continuously decode the 3-D motions from EMG signals.
Just as the EMG decoding was able to be used to control
the robotic leg after a targeted muscle reinnervation (TMR)
surgery [15], the accurate arm motion decoding from EMG
is promising to be used for the prosthetic arm control
combining with TMR technique in the future.
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