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Abstract— Designing and developing a comfortable and con-
venient EEG system for daily usage that can provide reliable
and robust EEG signal, encompasses a number of challenges.
Among them, the most ambitious is the reduction of artifacts
due to body movements. This paper studies the effect of
head movement artifacts on the EEG signal and on the dry
electrode-tissue impedance (ETI), monitored continuously using
the imec’s wireless EEG headset. We have shown that motion
artifacts have huge impact on the EEG spectral content in
the frequency range lower than 20Hz. Coherence and spectral
analysis revealed that ETI is not capable of describing dis-
turbances at very low frequencies (below 2Hz). Therefore, we
devised a motion artifact reduction (MAR) method that uses a
combination of a band-pass filtering and multi-channel adaptive
filtering (AF), suitable for real-time MAR. This method was
capable of substantially reducing artifacts produced by head
movements.

I. INTRODUCTION

Recent technological developments in the area of nonin-
vasive monitoring of electrical activity of the brain (elec-
troencephalography, EEG) focus on sensors that do not use
conductive gel and skin preparation. Instead, so called dry-
contact electrodes, as well as more convenient headsets,
are used [1]. Although such solutions offer advantages by
enabling short setup time, higher comfort and convenience
for the user, and the use by non-expert users in a daily life sit-
uation, they also come with drawbacks. Ensuring high signal
quality in uncontrolled environment of daily life recordings
becomes extremely difficult, as the contact between the
electrode and the skin is much more fragile and prone to
various type of noise and interference. These problems are
emphasized during movement as motion artifacts result in
substantial distortion of the recorded signal, such that EEG
can hardly be recognized. In this paper we study the motion
artifacts produced during head movements, and we present
an approach to reduce the impact of such movement artifacts
on the EEG signal.

A. Motion artifacts

Motion artifacts in EEG recordings are electrical distur-
bances of the measured EEG signal due to motion. They
share the same frequency spectra with EEG (up to 50Hz) and
they can have amplitudes several times larger than the EEG
signal (in the order of a few mV). Due to the non-stationary
nature and spectral overlap of EEG signal and artifacts,
handling motion artifacts is challenging task that requires
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tailored EEG system design and development [2], [3]. Such
task becomes even more difficult when dry electrodes are
used, as they have different electrode-skin contact properties
than gel-based electrodes [4]. User motion results in changes
of the geometry of the contact between the electrodes and
the skin and hence changes in the electrical coupling between
the two. Furthermore, charge redistribution at the contact due
to skin and tissue deformation takes place.

B. State-of-the-art in motion artifacts handling

In most EEG studies users are instructed not to move.
In the analysis, segments with motion artifacts are excluded
if they occur in the signal. Only a handful of papers dis-
cusses MAR approaches for (gel-based) EEG monitoring
applications. They usually focus only on either detecting
motion artifacts [5], [6], or reducing artifacts when regular
movements are performed, such as human locomotion [2] or
electrode movement (e.g., pushing or pulling) [7], [8]. The
approaches by O’Regan et al. [5], [6] were focused on using
gyroscopes and machine learning techniques in classifying
recorded signal into segments contaminated with motion
artifacts and clean segments. Achieved detection accuracy
was high, but detecting motion artifacts is just a first step in
MAR. Although substantial reduction of motion artifacts was
achieved in [2], the complex setup used for artifact handling,
that includes video monitoring, cannot easily be translated
to a lifestyle setting. The approaches by Sweeney et al.
[7], [8] were focused on using the differential signal from
accelerometers to characterize the impact of electrode motion
relative to the skin. The usage of these signals showed good
performance on classifying artifacts according to their sever-
ity but showed limited usefulness when advanced algorithms
are employed for MAR [8]. This suggests that accelerometer
information has limited usefulness and can only capture some
aspect of the motion artifact.

C. Handling motion artifacts using ETI

Relative movement of the electrode on the scalp and
deformation of the skin underneath induce changes in the
electrical properties of the contact interface. We argue that
the absolute value of the electrode-tissue impedance (ETI)
magnitude does not impact the signal quality of the measured
EEG [9], but the relative changes that are occurring at the
interface do. In our previous study we have observed that the
ETI changes correlate with the changes happening at the dry
electrode-skin contact interface during motion artifacts [10].
We have also explored the usage of ETI for off-line motion
artifact reduction (MAR) [11]. By using canonical correlation
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Fig. 1. The evaluation setup: imec’s EEG headset and dry electrodes.

analysis and multi-channel linear prediction methods we
have shown that combining ETI components (magnitude,
in-phase, and quadrature), not only from a single but also
from multiple channels, helps in reducing motion artifacts.
In this paper we explore further what is the impact of head
movements on the EEG and ETI, and we propose a method
that combines band-pass filtering (BPF) and adaptive filtering
(AF) approach for real-time MAR. We also investigated
the degree in which motion artifacts can be suppressed by
varying the number of ETI components in the AF algorithm.

II. METHODS

A. Experimental setup and recoding protocol

The experiment was performed using the wireless imec
EEG headset, shown in Figure 1. It has the capability of
continuously measuring EEG and ETI signal at 1024Hz [12].
Commercially available dry Ag/AgCl electrodes with pins
are used to penetrate the hair and they are mounted on a
spring-loaded support to ensure good contact with the skin,
and more comfort to a user (see Figure 1). Active electrode
chips that buffer the electrical signal are placed directly
on top of the spring-loaded contact to prevent noise from
entering the system as much as possible. In addition, they
inject a small current (up to 200nA) to perform ETI measure-
ment. The headset measures the potential difference between
measurement electrodes at locations C3, C4, Cz, and Pz, of
the International 10-20 System for EEG measurements, and
the reference electrode positioned at the right earlobe.

The database consisted of the recordings obtained on
six participants, performing different types of movement as
explained in our previous work [11]. For this study we
focused only on the head movements, while participants had
their eyes either open or closed:

• Head nodding: The experiment started with 60s period
where the participant was sitting straight and no head
movements were involved. The participant was then
asked to nod his head for 60s. The session was finished
with 60s period with no movements involved.

• Head shaking: The experiment started with 60s where
the participant was sitting and no head movements were
involved. The participant was then asked to shake his
head for 60s. The session finished with period of 60s
with no movements involved.

B. EEG and impedance signal analysis

EEG and impedance signals were preprocessed by apply-
ing different filters. A stop-band filter (third order Butter-
worth filter) in the frequency range of 49 to 51Hz was used
to eliminate power line noise. ETI signals were filtered with
a high-pass, first order, Butterworth filter at 0.194Hz, since
a similar filter is applied to the EEG signals by the hard-
ware solution [12]. After preprocessing, we investigated the
spectral properties of filtered EEG and impedance signals by
comparing spectral coherence and power spectral densities in
presence and in absence of motion artifacts. Spectral prop-
erties are estimated using the well-known Welch method.
Epochs with a 2s duration and 75% of overlap were used in
the analysis.

C. Adaptive filter based approach for MAR

The MAR approach consists of two steps. In the first
step, band-pass filter (BPF) is applied to the EEG and
impedance signal. We used a third order Butterworth filter.
Suitable cutoff frequencies are determined based on the
evaluation presented in Section III. The second step con-
sisted in applying the leaky least-mean square multi-channel
adaptive filtering (MCAF) algorithm. The reference signals
was formed as a subset of ETI components, i.e., magnitude,
in-phase, and quadrature, per 1 or 4 EEG channels.

The MCAF algorithm assumes that the clean EEG signal
(with no motion artifact impact), denoted with EEGk, is
linearly combined with the signals stemming from motion
artifact (mk). The measured measured signal at each EEG
channel k (dk) can then be expressed as shown in Equation 1.

dk = EEGk +mk (1)

The MCAF uses subsequent vector observations, where the
t-th observation (i.e., at sample time t) can be expressed as
shown in Equation 2. Here, r[t] is the observation of the
multi-channel reference signal r, observed at sampling time
t. In our case, r will contain one or more ETI signals that are
taken into account within the MCAF algorithm application
(see Section III). In this equation, D represents the time lags
or the number of filter coefficients used, and T is the matrix
transpose operator.

I[t] = [r[t]T r[t− 1]T r[t− 2]T ... r[t−D]T ]T (2)

w[t+ 1] = (1− µα)×w[t] + µ× ϵ[t]I[t]/||I[t]|| (3)

ϵ[t] = d[t]−wT [t]I[t] (4)

The coefficient values of the AF (w[t]) are updated for
each observation time instance t, using an iterative algorithm,
as shown in Equation 3 [13]. This algorithm is also known
as multiple-input canceler least-mean square AF. In the
equation, α is the forgetting factor (such that the expression
b = 1 − µα is between 0 and 1), µ is the step size of the
algorithm (between 0 and 2), and ϵ[t] is the estimation error.
Estimation error is computed as shown in Equation 4. The
’cleaned’ EEG signal at the time instant t is than equal to
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the estimation error, as we assume that the EEG signal is
uncorrelated with the linear combination of reference ETIs.

The parameters of MCAF, namely step size, forgetting
factor, and number of coefficients, impact the performance
of the AF algorithms. Therefore, we empirically determined
their optimal values when using different ETI component
combinations as reference signals (as shown in Section III).

D. Evaluation metrics

In the evaluation step we computed the power spectrum
and the signal histogram (i.e., probability density function,
pdf) of the two 60s baseline sections at the start and end
of each recording, and compared them to each other and to
the motion artifact contaminated segments of EEG signals
before and after MAR algorithm application. We used two
scores that are based on spectral similarities and differences
in the pdf (introduced in [11]):

• Spectral Score (S-Score): The mean absolute difference
between the power spectra of the segment under test and
baseline EEG power spectra, normalized with respect to
the baseline EEG power spectra (last 60s). The power
spectra in the frequency band between 1 and 40Hz was
computed.

• Distribution Score (D-Score): The maximum distance
in the empirical cumulative distribution function (ecdf)
between the EEG segment under test and baseline EEG.

The lower the value of the scores, the better the performance
of the method.

III. RESULTS
A. EEG and ETI

As a first step in designing the proper MAR approach
we explored the impact of motion artifacts on EEG and
ETI magnitude signals. Figure 2 illustrates the differences
in the spectral content of a clean and motion contaminated
segments, depicting EEG (top graph), ETI magnitude (mid-
dle graph), and the coherence between the two (bottom
graph). These figures illustrate the spectra of Cz channel
of Participant 1 while he was performing head nodding
movement with eyes closed. Similar profiles were observed
with other participants, during different movements, and
across all 4 channels.

A substantial increase in EEG spectral content below the
frequency of 5Hz (delta band brain activity), a medium
increase in the range of 5-20Hz (alpha and low beta bands),
and a smaller increase of spectra in the higher frequency
range can be observed. This demonstrates that the impact
of the motion artifact influences a wide range of frequency
components of the EEG but to a different extent. The middle
graph shows that the ETI frequency components below 25Hz
are highly affected by motion artifacts, while this is not the
case for higher frequency components. This suggests limited
potential of ETI to capture the impact of motion artifacts on
the higher frequency components of the EEG (i.e., beta and
gamma bands).

Finally, the coherence between the EEG and ETI signal
of up to 2Hz is quite high for segments with no artifacts,
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Fig. 2. Spectral content of the EEG signal, ETI magnitude, and coherence
between the two. Participant 1 Cz channel data while performing head nod-
ding with eyes closed is shown. Dashed lines represent standard deviation.

and quite low in the rest of the frequency band of interest.
However, in the motion artifact segment, the coherence below
2Hz drops substantially, while it increases in the frequency
band of up to 15Hz. Therefore, we inferred that the changes
of the ETI magnitude in the frequency band of up to few Hz
are not correlated to the changes in the EEG due to motion.
Also, the absence of the increase of coherence between the
clean and motion artifact contaminated EEG signal at the
higher frequency band suggests limited usefulness of ETI
for MAR in frequencies higher than 15Hz.

B. Combining BPF and AF

To test the impact of band pass filter on the performance
of the AF algorithm, we computed S-Scores and D-Scores of
the BPF/AF approach for different high and low pass values.
The high-pass values used were: 0.25, 0.5, 1, 1.5, and 2Hz;
the low-pass values were: 10, 15, 20, 25, and 35Hz. We
used only ETI magnitude component of a single channel,
coefficient number (D) was 1024, step size (µ) was 0.5, and
forgetting factor (α) was 0.1. An illustration of the S-Score
and D-Score curves is shown in Figure 3. Although they
depict score values for Participant 1 while he was performing
different head movements, similar behavior can be observed
with the other five participants. As can be seen in the figure,
the best performance (i.e., the lowest scores) are achieved
with higher values of low and high pass filters.

Furthermore, we compared the scores when using different
combinations of ETI components as the reference signal for
adaptive filtering. BPF in the 2-35Hz range was employed.
The components used are ETI magnitude, in-phase, and
quadrature components. The reference consisted either of
one of these components or their combination for a single
channel and for all 4 channels. Empirical evaluation of the
performance was used to select the step size: 0.5 for 1
component, 0.4 for 2 components, 0.3 for 3 components,
0.15 for 4 components, and 0.06 for 8 or 12 components of
ETI. The same values for forgetting factor as in the previous
evaluation and the coefficient number of 128 (as we low pass
filtered the signals) were used.
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Fig. 3. The influence of band-pass filtering on S-Scores and D-Scores
across different sessions for Participant 1, aggregated per channel. The black
line shows the baseline score values
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The outcome, shown in Figure 4, revealed that combining
all ETI components within a single channel into a reference
signal for MCAF results in the lowest S-scores, but highest
D-Scores. This result does not support our previous finding
that combining ETI components per single channels and
across all channels improves performance of MAR algo-
rithms [11]. We believe that the difference in the results
was due to removal of large motion artifacts in the low
frequency range performed using BPF. Using more reference
components could to some extent capture a portion of this
low-frequency artifacts.

In sum, our BPF/AF method is capable of performing
substantial reduction of motion artifacts, as illustrated in
Figure 5. However, due to the 2Hz high-pass filtering it also
impacts the low frequency EEG content (in the delta band),
making low-frequency EEG monitoring difficult. Also, esti-
mating to what degree motion artifact components are still
present in the cleaned EEG signal is still an open question.
This aspect and the usage of other motion artifact handling
methods are some of the topics for further investigation.

IV. CONCLUSIONS
This paper investigated the impact of head motion arti-

facts on EEG and electrode-tissue impedance (ETI) signals
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Fig. 5. The result of applying MCAF on a portion of recorded signal.

recorded with a wearable, wireless EEG headset with inte-
grated dry electrodes. We have shown that components of the
ETI signal (magnitude, in-phase, and quadrature) are not ca-
pable of capturing low-frequency (lower than 2Hz) changes
in EEG stemming from motion artifacts. We proposed a
method that combines the band-pass and adaptive filtering
to cope with the limitations of the reference ETI signal.
We have shown that this method can achieve substantial
reduction of motion artifacts.
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