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Abstract— Coronary Wave Intensity Analysis (cWIA) is a
technique capable of separating the effects of proximal arterial
haemodynamics from cardiac mechanics. The cWIA ability to
establish a mechanistic link between coronary haemodynamics
measurements and the underlying pathophysiology has been
widely demonstrated. Moreover, the prognostic value of a
cWIA-derived metric has been recently proved. However, the
clinical application of cWIA has been hindered due to the
strong dependence on the practitioners, mainly ascribable
to the cWIA-derived indices sensitivity to the pre-processing
parameters. Specifically, as recently demonstrated, the cWIA-
derived metrics are strongly sensitive to the Savitzky-Golay
(S-G) filter, typically used to smooth the acquired traces. This
is mainly due to the inability of the S-G filter to deal with the
different timescale features present in the measured waveforms.
Therefore, we propose to apply an adaptive S-G algorithm that
automatically selects pointwise the optimal filter parameters.
The newly proposed algorithm accuracy is assessed against a
cWIA gold standard, provided by a newly developed in-silico
cWIA modelling framework, when physiological noise is added
to the simulated traces. The adaptive S-G algorithm, when
used to automatically select the polynomial degree of the S-
G filter, provides satisfactory results with ≤ 10% error for all
the metrics through all the levels of noise tested. Therefore,
the newly proposed method makes cWIA fully automatic and
independent from the practitioners, opening the possibility to
multi-centre trials.

I. INTRODUCTION

Coronary Wave Intensity Analysis (cWIA) is a technique
capable of separating the effects of proximal arterial dy-
namics from cardiac mechanics driving coronary perfusion
[1]. cWIA requires simultaneous measurements of pressure
and velocity waveforms at one point in a vessel and allows
separation of the pressure and velocity waves travelling
forward and backwards through the coronary network. Each
of the 6 main waves identifiable from the cWIA output
[2] are related to a specific event through the cardiac cycle
(left ventricle relaxation, aortic valve closure) allowing the
coronary measurements to be directly related to their physio-
logical origin. Initially used to investigate the unique feature
of the coronary blood flow of being mainly diastolic [2], [3],
cWIA recently received increasing attention as a powerful
technique to establish a mechanistic link between coronary
haemodynamic measurements and the underlying pathopys-
iology [3]. More recently, De Silva et al. [4] demonstrated
the prognostic value of a cWIA-derived index in predicting
functional recovery following myocardial infarction.
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The clinical application of cWIA has, however, been
limited by technical challenges including a lack of stan-
dardization across different studies, along with the unknown
cWIA-derived indices sensitivity to the processing (Pulse
Wave Speed) and pre-processing (smoothing of the acquired
waveforms) parameters. Furthermore, efforts to extend cWIA
to multi-centre trials have been hindered due to the strong
dependency of the analysis on the specific way it is applied
within individual research and clinical settings. While Siebes
et al. [5] showed the low sensitivity of the cWIA outcome
to error in the Pulse Wave Speed (PWS) estimation, the
sensitivity of the cWIA metrics to the filtering step prior
to the analysis is still unknown.

The acquired pressure and velocity signals are usu-
ally ensemble-averaged over few cardiac cycles and then
smoothed using the Savitzky-Golay (S-G) filter [2]–[6] to
remove the acquisition noise and estimate the signals’ time
derivatives, input of the cWIA. Beatwise processing has
never been considered due to the strong impact that noise has
on the velocity signal over a single cardiac cycle. Recently,
Rivolo et al. [7] showed, using in vivo human and animal
data, that the pressure and velocity time derivatives are
strongly sensitive to the S-G parameters choice (polynomial
degree N and window width M), significantly affecting,
in turn, the cWIA-derived metrics (areas and peaks of the
main waves). They suggested that the common practice of
ensemble-averaging over few cardiac beats combined with
a central finite difference scheme enhances the robustness
of the cWIA. The main reason for the significant variability
observed has been ascribed to the incapability of the S-G
filter to deal with the different timescale features present
in the velocity waveform, spanning from the relatively flat
systolic plateau to the sharp early-diastolic rise.

A possible solution to overcome this limitation could be
provided by a recently proposed adaptive S-G filter algorithm
[6] that automatically selects pointwise the optimal S-G filter
parameters (N or M). The algorithm has been developed
for automatically smoothing the ECG signals and tested on
simulated and real ECG data, showing promising results.
Furthermore, in Rivolo et al. [7] solely the variability could
be assessed since to evaluate accuracy a cWIA gold standard
is required. Recently, Lee et al. [8] developed an integrative
framework aimed at enabling an in silico cWIA. It combines
the one-dimensional vascular flow modelling approach with
a model of contracting myocardium that incorporates a
poromechanical framework to take into account the fluid-
structure interactions between the myocardium and the em-
bedded vasculature.
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The purpose of this study is, within this modelling frame-
work, to assess the accuracy of the adaptive S-G filter
with respect to the cWIA-derived metrics, when simulated
physiological noise is added to the pressure and veloc-
ity waveforms. The accuracy is evaluated when ensemble-
averaging is applied, imitating the clinical practise, as well as
in case of beatwise processing, investigating if the adaptive
S-G filter makes this novel application possible. An auto-
matic parameter-free algorithm for cWIA pre-processing is
highly desirable to eliminate the cWIA dependence on the
practitioners to support potential prospective of multi-centre
trials for integrating cWIA in the routine clinical practise.

II. METHODS

A brief introduction on the theoretical aspects of the cWIA
theory, the adaptive S-G algorithm and the in-silico cWIA
model is presented here. We refer to the relevant papers for
an exhaustive presentation [6], [8], [9].

A. Wave Intensity Analysis

Following the in-depth overview provided by Parker [9]
the main steps involved in the WIA are presented. Briefly, the
beats of interest are selected and then pressure p and velocity
v waveforms are ensemble-averaged in order to remove high
frequency noise. The signals’ time derivatives (dp, dv), input
to the WIA, are computed using a 4th order central finite
difference scheme, since it has been shown to be optimal
in reducing the outcome variability [7]. After computing
the signals time derivative, the simultaneous forward and
backward travelling waves can be separated, as it follows:
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c represents the Pulse Wave Speed (PWS) and ρ the blood
density. Dividing the time increments by dt avoids the WIA
dependence to the sampling time [9]. The PWS is estimated
by using the sum-of-squares method [9],

c =
1

ρ

√∑
dp2∑
dv2

, (3)

which is to date the only method applied in the coronary
arteries [2]–[5]. It is important to note that the summations
have to be taken over an integer number of cardiac periods.
The cWIA-derived metrics are then defined as the main
waves’ integral area and peaks.

B. Adaptive Savitzky-Golay filter

The desired property of a denoising algorithm is to re-
move the noise introduced by the acquisition process while
preserving the relevant features of the signal. Therefore, for
a local polynomial regression algorithm based on the least
square criterion, such as the S-G one, the question is ”Which
is the optimal window width/polynomial order to be selected

for the regression?”. This problem, as shown in [6], can be
solved by optimising the SURE objective (risk estimator),
which is an unbiased estimator of the mean square error.
Considering the smoothing process at a point n0T , where T
is the sampling time, Bn0

is defined as the set of samples
that falls in the window width centred in n0. The SURE risk
estimator is defined as
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2− 2
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where N0 is the cardinality of the set Bn0 , xi are the noisy
samples and fi(x) =

∑p
k=0 ak,n0

(x)(nT )k are the values of
the fitted polynomial in the N0 samples. The noise standard
deviation σ is estimated using the median estimator [6]:

σ =
{median(|xn − xn−1|;n = 2, 3, . . . , N)}

0.6745
. (5)

A regularization term can be added to the SURE risk
estimator ε to improve the algorithm performances in low
Signal to Noise Ratio (SNR) regimes:

ε̂ = ε+
λσ2

N0

N0∑
i=1

(
∂fi(x)

∂xi

)2

, (6)

where λ is a regularisation parameter that can be tuned to
increase the smoothness of the filtered signal. The SURE
and regularised SURE (rSURE) estimators can be used to
adaptively chose the window width for a fixed polynomial
degree (awS-G) or to adaptively choose the suitable poly-
nomial degree for a fixed window width (apS-G). In both
cases, for each sampling point the SURE ε (or rSURE ε̂)
cost function is calculated for each window width value or
polynomial degree and then the one providing minimum ε
(or ε̂) is selected as optimal.

C. In silico coronary Wave Intensity Analysis

The in silico cWIA model, developed by Lee et al. [8],
[10], allows a systematic investigation of the modulating
factors underlying each wave, not achievable by means of
experiments, due to physiological complexity of the system
under study. It combines the one-dimensional vascular flow
with a model of contracting myocardium that incorporates
a poromechanical framework to describe the fluid-structure
interaction between the contracting myocardium and the
vessels penetrating it. The coupling between the two systems
occurs both distally, at vascular termini distributed through-
out the myocardium, and proximally, via the aortic sinus
hemodynamics described as part of the reduced-order sys-
temic circulation model. Rather than prescribing measured
quantities as boundary conditions, the components of the
model interact with one another and drive the evolution of
the coronary waves. This framework thus allows the coupled
wave propagation-perfusion-contraction dynamics to be stud-
ied throughout the full heart cycle. The simulations are run
on a porcine cardiac geometry obtained via high-resolution
cryomicrotome imaging [8], from which the myocardial
mesh and a truncated vascular mesh featuring 4000 vessels
were obtained. Further details of the simulation setup can be
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found in Lee et al. [8]. The simulated waveforms exhibits all
the physiologically relevant features (Fig. 1). Moreover, the
main experimentally-observed cWIA waves can be clearly
identified (Fig. 1). Furthermore, the model traces are sampled
at 10 kHz providing high temporal resolution test data void
of noise.

D. Analysis of Adaptive S-G Accuracy
The simulated pressure and velocity waveforms are ex-

tracted in the proximal part of the LAD and the cWIA and the
derived metrics are calculated and used as gold standard. The
study would be focused on the integral areas, the main metric
used in literature [2], [3], [5]. However, the main waves’
peaks accuracy provided by the adaptive S-G algorithms is
discussed in the Section IV. White Gaussian noise of 0 mean
and standard deviation varying between 5 and 30, in steps
of 5, is added both to a single beat and to 5 consecutive
beats of the simulated velocity profile, imitating a beat-by-
beat study as well as the most common practise of ensemble-
averaging over few cardiac cycles. The awS-G and the apS-
G algorithm, both for the SURE and rSURE estimators,
are then applied on the single trace as well as pre or post
ensemble-averaging over the 5 noisy beats. Based on [7],
we chose a window width range where the awS-G algorithm
can automatically choose the optimal M of [7 − 35], and a
polynomial range of [1 − 5] for the apS-G algorithm. The
suitable pre-selected polynomial degree and window width,
for the awS-G and apS-G respectevely, are chosen based on
an extensive sensitivity analysis.

Since the pressure waveform is usually of high quality
in the clinical practise no noise is added. Moreover, in [7]
it is shown that smoothing the ensemble-averaged pressure
increases the variability of the cWIA outcome. The auto-
matically smoothed velocity profiles are then used as an
input for the cWIA analysis, outlined in Section II-A. The
PWS=15 m/s derived from the simulation is used throughout
the analysis. The cWIA derived metrics are then compared
with the gold standard and the accuracy is assessed in terms
of the percentage error defined as,

percentage error =
(areaigold standard

− areai)
areaigold standard

× 100, (7)
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Fig. 1. The simulated traces and the resultant cWIA, both showing all the
physiological main features [2], are visualised.

where the index i is referred to the cWIA waves. The
percentage error is presented as mean±SD where the mean
is performed over 100 experiments to avoid random noise
variability. The study is performed for a sampling rate of
200 Hz and 1 kHz, typical rates used in the clinical arena.

III. RESULTS

(i) awS-G or apS-G?

The apS-G algorithm showed consistently higher accuracy
amd robustness against the awS-G approach for all the
metrics investigated through all the levels of noise simulated.
This conclusion is valid for both the SURE and rSURE es-
timators for both the sampling rates investigated. Therefore,
apS-G is selected for the remainder of the analysis.

(ii) apS-G sensitivity to the fixed window width

The apS-G algorithm is not strongly sensitive to the choice of
the window width selected. As a matter of fact, it exhibited
≤ 10% variation in the cWIA metric accuracy when the
window width is varied between [21−35] for 1 kHz sampling
rate and between [7− 21] for a sampling rate of 200 Hz for
both the SURE and rSURE estimators. The best performing
window widths are M=27 for 1 kHz sampling rate and M=9
for 200 Hz sampling rate. These are the values used for
the next steps of the analysis. The rSURE estimator for the
apS-G algorithm is not strongly sensitive to the smoothing
parameter λ. The sensitivity has been tested varying λ = [1−
10] in steps of 1. However, the rSURE algorithm consistently
performed slightly worse (≈ 2− 3%) than the SURE one in
terms of accuracy for all the levels of noise tested for both the
sampling rates analysed. Therefore, the apS-G algorithm with
the SURE risk estimator is selected for the rest of the analysis
since it consistently outperformed the apS-G combined with
rSURE estimator and is parameter-free.

(iii) apS-G performances

For the single trace study the apS-G algorithm using the
SURE risk estimator is able to successfully (≤ 10% percent-
age error) remove the simulated noise for SD≤ 25 and SD≤
20 for a sampling rate of 1 kHz and 200 Hz respectively.
Considering that physiological noise is considered to be
adequately simulated using SD 10, the apS-G successfully
removes most of the acquisition noise.
When solely ensemble-averaging is applied acceptable accu-
racy (≤ 10% percentage error) is obtained only for SD= 5.
For all the other levels of noise the percentage error is ≥ 20%
for all the main waves’ areas for both the sampling rates
investigated.
Ensemble-averaging prior to apply the apS-G algorithm
consistently outperforms (≈ 3−5%) the opposite procedure.
Ensemble-averaging and than applying apS-G algorithm with
SURE risk estimator provides satisfactory results, success-
fully providing a percentage error of ≤ 10% through all the
metrics, for all the levels of noise and for both the sampling
rates analysed (Table I). The most sensitive metric to the
noise is the area of FW3. This is mainly due to the relative
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TABLE I
THE PERCENTAGE ERROR IS LISTED FOR THE APS-G SMOOTHING POST-ENSEMBLE-AVERAGING FOR 200 HZ AND 1 KHZ SAMPLING RATE.

Ensemble-Averaging→apS-G 200 Hz Ensemble-Averaging→apS-G 1 kHz
Noise SD 5 SD 10 SD 15 SD 20 SD 25 SD 30 SD 5 SD 10 SD 15 SD 20 SD 25 SD 30
FW1 1.4±0.8 2±1.7 3.3±2.2 4±2.4 4.7±3 4.4±3.4 3.2±0.6 2.7±1.2 1.9±1.5 2±1.7 3.2±2.1 4.3±2.8
FW2 3.2±1.6 3.9±2.9 5±3.8 6.1±4 7.8±6.1 9±6.4 3.6±1 3.5±1.7 3.3±2.2 3.1±2.3 3.6±2.8 5.1±3.5
FW3 1.4±1 2.8±2.2 4.7±3.9 5.2±3.9 8±6.1 9.6±7 10.4±1.6 9.9±2.1 8.7±3.1 7.7±3.9 6.7±4.5 6.2±4.7
BW1 1.44±0.8 2±1.7 3.3±2.2 4±2.4 4.7±3 4.4±3.3 3.2±0.6 2.7±1.2 1.9±1.5 2.1±1.7 3.2±2.1 4.2±2.8
BW2 2±1.2 3±2.2 4.3±3.4 4.9±3.7 7.1±5.6 8.9±6.3 7.1±0.9 6.7±1.7 5.9±2.6 5.2±3.06 4.4±3.3 5±3.6

short duration and the proximity to FW2. If FW3 is excluded
from the analysis, the percentage error is ≤ 5% for all the
remaining metrics for most of the levels of noise tested.

(iv) PWS estimation

The simulated PWS=15 m/s has been used for the cWIA
in order to assess the adaptive S-G filter performances
independently to an error in the PWS estimation. However, it
is crucial to assess how the sum-of-squares method performs
in case of de-noised traces, since the exact PWS is unknown
in the clinical practise. Applying the sum-of-squares method
to the simulated traces provides PWS= 12.97 m/s. When
the sum-of-squares method is applied to the denoised traces
the maximum estimation error obtained is ≈ 30% for the
single trace case, which is significantly below the ±50%
estimation error threshold range in which the cWIA is
insensitive to a PWS variation [5]. Moreover, if ensemble-
averaging is applied, for both 200 Hz and 1 kHz, the PWS
estimation error drops below 10% (Figure 2). It is therefore
recommended to apply the sum-of-squares method over the
ensemble-averaged traces for the PWS estimation, and then
use it for both the multi trace or beat-by-beat study.

IV. DISCUSSION AND CONCLUSION

We implemented and tested an adaptive S-G algorithm
to automatically smooth the acquired pressure and velocity
waveforms making, for the first time, cWIA a fully au-
tomated analysis. The percentage error in the cWIA de-
rived metrics obtained applying the apS-G algorithm post
ensemble-averaging, combined with the SURE risk estima-
tor, is≤ 10% for all the metrics through all the levels of noise
tested (Table I). Moreover, the error in the estimated PWS

P
W

S
(m

/s
)

(a) 200 Hz (b) 1 KHz
SD 5 SD 10 SD 15 SD 20 SD 25 SD 30 SD 5 SD 10 SD 15 SD 20 SD 25 SD 30

13

12

11

13

14

P
W

S
(m

/s
)

Fig. 2. The estimated PWS by means of sum-of-squares method applied to
the ensemble-averaged and apS-G denoised traces is compared to the gold
standard one (green dashed line) for both sampling rates analyzed.

is within the range where the cWIA has been demonstrated
not to be sensitive [5]. Furthermore, we have shown that the
strategy suggested in [7] of relying solely on the ensemble-
averaging over few beats is valid only for low levels of noise
(SD= 5). If beatwise study are of interest apS-G provides a
high level of accuracy for physiological range of noise, up to
SD≤ 25, above which the percentage errors rises to ≈ 15%.
When the peaks of the main waves are of interest, the
percentage error rises to a range of ≈ 15−20% for both the
sampling rates analysed. The lower accuracy in the waves’
peaks is not surprising since they are the results of a product
of two time derivatives resulting in a strong amplification of
the acquisition noise.

In conclusion, as a guideline for the clinicians applying
cWIA, the apS-G algorithm combined with the SURE risk
estimator (with M=9 for 200 Hz and M=27 for 1 kHz)
provides an accurate and fully automatic method to obtain the
cWIA-derived metrics from acquired waveforms, therefore
eliminating the cWIA dependency on the practitioners.

ACKNOWLEDGMENT
This study was supported by the British Heart Foundation Centre of

Research Excellence hosted at King’s College under grant number BHF
RE/08/003. The authors acknowledge financial support from the Department
of Health via the National Institute for Health Research (NIHR) compre-
hensive Biomedical Research Centre award to Guy’s & St Thomas’ NHS
Foundation Trust in partnership with King’s College London and King’s
College Hospital NHS Foundation Trust.

REFERENCES

[1] A. D. Hughes et al., “Waves in arteries: A review of wave intensity
analysis in the systemic and coronary circulations,” Art. Res., vol. 2,
no. 2, pp. 51–59, May 2008.

[2] J. E. Davies et al., “Evidence of a dominant backward-propagating
”suction” wave responsible for diastolic coronary filling in humans,
attenuated in left ventricular hypertrophy.” Circ., vol. 113, no. 14, pp.
1768–78, Apr. 2006.

[3] A. Kyriacou et al., “Improvement in Coronary Blood Flow Velocity
with Acute Biventricular Pacing is Predominantly Due to an Increase
in a Diastolic Backward-Travelling Decompression (Suction) Wave.”
Circ., Aug. 2012.

[4] K. De Silva et al., “Coronary Wave Energy: A Novel Predictor of
Functional Recovery After Myocardial Infarction.” Circ., Mar. 2013.

[5] M. Siebes et al., “Potential and limitations of wave intensity analysis
in coronary arteries.” MBEC, vol. 47, no. 2, pp. 233–9, Feb. 2009.

[6] S. R. Krishnan et al., “On the Selection of Optimum Savitzky-Golay
Filters,” IEEE Trans. on Signal Proc., vol. 61, pp. 380–391, 2013.

[7] S. Rivolo et al., “Enhancing Coronary Wave Intensity Analysis Ro-
bustness by High Order Central Finite Differences,” Art. Res., 2014.

[8] J. Lee et al., “In-silico coronary wave intensity analysis,” submitted to
JP, 2014.

[9] K. H. Parker, “An introduction to wave intensity analysis,” MBEC,
vol. 47, no. 2, pp. 175–188, 2009.

[10] J. Lee et al., Multiscale Modelling of Cardiac Perfusion. Submitted
for inclusion in The Cardio-circulatory System: from Modelling to
Clinical Applications. A. Quarteroni, 2014.

5059


