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Abstract— A persistent question in multivariate neural signal
processing is how best to characterize the statistical association
between brain regions known as functional connectivity. Of the
many metrics available for determining such association, the
standard Pearson correlation coefficient (i.e., the zero-lag cross-
correlation) remains widely used, particularly in neuroimaging.
Generally, the cross-correlation is computed over an entire
trial or recording session, with the assumption of within-trial
stationarity. Increasingly, however, the length and complexity
of neural data requires characterizing transient effects and/or
non-stationarity in the temporal evolution of the correlation.
That is, to estimate dynamics in the association between
brain regions. Here, we present a simple, data-driven Kalman
filter-based approach to tracking correlation dynamics. The
filter explicitly accounts for the bounded nature of correlation
measurements through the inclusion of a Fisher transform in
the measurement equation. An output linearization facilitates a
straightforward implementation of the standard recursive filter
equations, including admittance of covariance identification
via an autoregressive least squares method. We demonstrate
the efficacy and utility of the approach in an example of
multivariate neural functional magnetic resonance imaging
data.

I. INTRODUCTION

In neural signal processing, functional connectivity refers
to the characterization of statistical association between brain
regions [1]. Several spectrotemporal metrics may be used to
determine this association. Functional connectivity intends to
describe the extent to which disparate brain regions exhibit
synchronized activity. It may, or may not, correspond to
anatomical connections [2]. The outcome of any application
of functional connectivity analysis amounts to a weighted
graph, where the recorded regions are the nodes and the
statistical associations constitute the edge weights. For elec-
trophysiological recordings, increasing effort has been di-
rected at elucidating these weights in a directed fashion
(see e.g., [3], [4] and the references therein). Despite these
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advances, the Pearson correlation coefficient – the simple,
zero-lag correlation between time series – remains a familiar,
reliable and widely used association metric, particularly in
neuroimaging [5].

The Pearson correlation (hereafter referred to as the cross-
correlation) is usually obtained over a single trial. Implicit
in this use is stationarity of the underlying data. When trials
are long, such an assumption is problematic. For instance,
a ‘medium’ correlation value (e.g., 0.5), may arise between
regions that are consistently associated across the trial, or,
between regions that alternate between strong and weak asso-
ciation. In order to disambiguate these scenarios, one requires
a way to track correlations on a finer time scale. Computing
correlations on shorter sub-trial windows (i.e., binning) can
provide such resolution at the expense of increased noise
susceptibility. In this note, we propose a simple Kalman-filter
based method to estimate the underlying dynamic evolution
of correlation structure. The filter operates on the time series
constructed by computing correlations in successive bins. We
note that, while similar approaches have been developed for
this purpose [6], they do not constrain the observation (i.e.,
the cross-correlation). As a consequence, the resulting esti-
mate may lie outside of the limits [−1, 1]. In the formulation
presented herein, we assume that each successive correlation
arises from a standard autoregressive model, transformed
through a Fisher transform (a normalizing nonlinearity that
constrains the random walk between [−1, 1]). The Fisher
transform is commonly used for performing correlation sta-
tistical significance testing [7].

Due to the nature of the nonlinearity, the problem reduces
to a straightforward Kalman approach after an inversion
step. We proceed by presenting the filter equations and
demonstrating their efficacy in tracking dynamic correlations
in synthetic networks. We show that the covariance matrices
needed for implementation can be successfully obtained in
a data driven way through the use of an autoregressive least
squares method (ARLS). Finally, we demonstrate proof-of-
concept by applying the method to an example of a high-
dimensional neural data obtained via functional magnetic
resonance imaging (fMRI). The overall method can be used
as a front-end for dimensionality reduction methods for the
purposes of classification and/or denoising.

The remainder of this note is organized as follows. In
Section II we formulate the model and filter. In Section III we
provide the relevant equations and provide simulation results,
including use of ARLS. The example involving multivariate
fMRI recordings is presented in Section III-D. Conclusions
and Future work are discussed in Section IV.
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II. MODEL FORMULATION

A. Dynamic Correlation Model

Let zk, k = 1, 2, ... be a vector time series of correlation
values between pairs of brain regions. We assume that zk
arises from an underlying state xk ∈ RN via

zk = F−1(xk), (1)

where the function F−1 is vector-valued inverse Fisher
transform which can be written as

F−1

 x1

...
xN

 =

 tanh
(
x1

)
...

tanh
(
xN

)
 . (2)

Such a function bounds the state within [−1, 1] and is
the standard transformation of the cross-correlation into a
normally distributed variable[7]. We assume that xk obeys a
standard, linear state space model of the form

xk = Akxk−1+wk−1,

yk = F−1(Ckxk+vk).
(3)

Here, the state noise process wk ∈ RN is an N -dimensional
random vector with multivariate Gaussian distribution having
zero mean and covariance matrix Qw ∈ RN×N , the noise
vector vk ∈ RN is a zero-mean multivariate Gaussian ran-
dom vector with covariance matrix Rv ∈ RN×N . Bounded
nature of correlation coefficients result in a non-Gaussian
noise for the observation vector yk. The covariance Qw

determines the extent to which correlation can change in
successive measurements, while Rv simply characterizes
measurement noise. In this sense, the vector yk consists of
noisy observations of pairwise correlation values. We assume
that state noise and measurement noise are uncorrelated.

We seek the optimal filter for obtaining the state estimate
ẑk in the sense of minimum mean-squared error (MMSE),
i.e.,

min
ẑk

E
[
‖ẑk − zk‖22

]
. (4)

Central to this problem is the calculation of the probability
density function (p.d.f.) of the state vector at any given
time k, conditioned on Yk = {y0,y1, . . . ,yk}, the set of
all the past observations. The presence of the nonlinearity
(2) complicates this calculation, but only slightly since F is
smooth and invertible. Thus, it follows immediately that we
can obtain a surrogate measurement

dk = F(yk), (5)

such that dk is linear in the state xk. Note that (1) directly
yields the p.d.f. of zk from that of xk. Thus, the problem (4)
reduces to the classical Kalman filter to obtain the (Gaussian)
p.d.f. of xk given Yk [8], [9], based on the measurements
dk.

III. RESULTS
A. Filter Equations

It follows directly from (3)-(5) that the p.d.f. p(yk|xk)
can be written as

p (yk|xk) =
1

|Jk|
p (vk = F(yk)−Ckxk) , (6)

where p (vk = F(yk)−Ckxk) is p.d.f. of vk, a zero-
mean multivariate Gaussian with covariance matrix Rv. A
standard Bayesian approach thus yields the posterior density
p (xk| Yk), which is Gaussian with covariance matrix (Σ)
and mean (µ) as

Σ =
(
Pk|k−1

−1 + Ck
TRv

−1Ck

)−1

,

µ = Σ ×
(
Pk|k−1

−1x̂k|k−1 + Ck
TRv

−1F(yk)
)
.

(7)

The Kalman update equations are thus

x̂ k|k−1 = Akx̂ k−1|k−1,

Pk|k−1 = AkPk−1|k−1AT
k
+ Qw,

x̂ k|k =
(
Pk|k−1

−1 + Ck
TRv

−1Ck

)−1

×
(
Pk|k−1

−1x̂ k|k−1 + Ck
TRv

−1F(yk)
)
,

Pk|k =
(
Pk|k−1

−1 + Ck
TRv

−1Ck

)−1

.

(8)

In the subsequent results, we assume an initial multivariate
Gaussian prior x0|−1 with mean x̂ 0|−1 and covariance of
P0|−1. We note that, for the problem (4), (8) returns the op-
timal estimate. After obtaining state estimate x̂k|k, the corre-
lation coefficients ẑk are approximated as ẑk = F−1(x̂k|k).

B. Example: Simulation

To illustrate the proposed filter, we simulate a univariate
example of the system (3) with A = C = 1, Qw = 0.1
and Rv = 0.05. Fig. 1 shows the estimate of the correlation,
i.e., zk, using the proposed filter, as well as the results of
naive application of the Extended Kalman Filter (EKF) based
on linearization of (2) [10], [11]. Clearly, state estimation
using proposed optimal filter is closest to the true state of
the system. This result is expected because EKF is simply a
linearization of F−1(), which will produce poor results when
the argument of the function is large (i.e., large correlation
values).
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Fig. 1. Example 1: Estimation of the state in system (3) with A = C = 1,
Qw = 0.1 and Rv = 0.05 using optimal non-linear filter for bounded
observation (red) and naive application of EKF (blue).
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Fig. 2. Normalized MSE versus the ratio of process and measure-
ment noise. Here, r = σ2

w/σ
2
v with A = C = I4, Qw = σ2

wI4 and
Rv = σ2

vI4.

Fig. 2 illustrates mean-square error (MSE) for the pro-
posed optimal filtering compared to EKF for different noise
parameter values. In this simulation, a 4-dimensional system
with A = C = I4 is considered. The process and measure-
ment noise are considered in the form of Qw = σ2

wI4,
Rv = σ2

vI4 and each time MSE is calculated for a specific
ratio of r = σ2

w/σ
2
v. It can be seen in this figure that by

increasing r, MSE is decreased for both filters. Also, It can
be seen that optimal filter always has better performance in
term of MSE compare to EKF.

C. Covariance Estimation

The most significant obstacle in implementation of filters
of the form (8) is selection of the covariance matrices
Qw and Rv. Here, we use the popular autoregressive least
squares (ARLS)[12]–[14] method to compute, in a data-
driven fashion, estimates of our filter covariances. In ARLS,
a prior value is assigned for each of the covariances and
the innovations of the subsequent filter is used to update
the estimates of Qw and Rv in the next iteration. More
explicitly, assuming the the model (3) is time-invariant, we
obtain an filtered estimate of the observations with non-
exact covariance matrices. By computing the innovations
and steady-state distributions, the problem of estimating Qw

and Rv then becomes a one-step least-squares optimization
problem. In our case, the ALS solution is again facilitated
by using the output linearized measurement (5).

Figure 3 shows the outcome of ALS when applied in a
Monte Carlo (n = 200) fashion to the system described
above. It is clear that the estimate covariances are in agree-
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Fig. 3. Estimation of Qw and Rv using auto-regressive least squares. Out-
come of n = 200 Monte Carlo trials is shown, demonstrating concentration
around the true value. System is as specified in the example of Section III-B.

ment of the true values.

D. Application to Multivariate Functional Magnetic Reso-
nance Imaging (fMRI)

The Kalman-filtering approach outlined above is partic-
ularly useful under the assumption of edge independence,
i.e., the matrix A in (3) is the identity matrix. In this
case, the n−dimensional update problem decomposes into
n 1-dimensional problems, alleviating computational issues
related to high-dimensionality. In brain imaging applications
involving large numbers of recording sites, this yield a highly
practical front-end correlation estimator.

To demonstrate the utility of the method, we apply it to an
example of neural recordings obtained via fMRI in human
volunteers1. For this particular dataset, we concatenated trials
to create a single long recording. The concatenation creates
known time-points at which the temporal structure of the
correlation would be expected to change. This particular
dataset contains 160 brain regions, yielding 12720 correlation
pairs. We bin the data over 5 datapoints (sampling rate of
0.45Hz), yielding an effective correlation window of around
10 seconds. We note, however, that the final result is largely
insensitive to bin size.

Figure 4 illustrates how the method can yield particular
insight into the temporal evolution of correlation structure.
In Figure 4A, the average correlation map, calculated over
the entire recording, is shown. This map highlights clear re-
gions of interest that exhibit seemingly significant correlation
structure. What this static map cannot discern is the extent
to which these correlations may be changing over the course
of the recording. By applying the ARLS-parametrized filter
(8) to the data, we can obtain estimates of the correlation
trajectories. These trajectories can be subsequently processed
with any flavor of clustering or dimensionality reduction
technique. In our case, we use the standard unsupervised
clustering algorithm k−means [20]. A Bayesian information
criterion (BIC) is used to determine the number of clusters
returned by the k-means procedure [21]. A salient cluster
of edges emerges that closely matches the high-correlation
edges in the static map (Fig. 4B). Figure 4C plots the average
trajectory of this cluster, where it is clearly seen that regions
of ‘high’ correlation in the static map actually consist of
epochs of very correlated activity, interspersed by epochs
that are more weakly correlated. As noted above, in the
case of this example, this temporal structure is expected as
a consequence of the data concatenation described above. In
this sense, the result demonstrates the capacity of the method
to deliver meaningful spatiotemporal structure, even in the
case of high dimensional data.

1To demonstrate the utility of the method, we apply it to an example
of fMRI data acquired from 15 human volunteers (Siemens 3T Trio,
4 × 4 × 4 mm3 voxels, TR 2.2s, TE 27ms, flip angle = 90 degrees,
36 slices, 200 volumes/run). Two echo-planar BOLD imaging runs were
acquired from each volunteer during quiet eyes-closed passivity (resting-
state). Images underwent standard functional connectivity processing with
regression of the mean whole brain signal [15], and motion censoring [16],
[17]. BOLD signals were averaged within non-overlapping 5 mm radius
spheres, using regions from prior studies [18], [19].
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Fig. 4. Disambiguating correlation dynamics. (A) Static pairwise correlation for n = 160 channels of fMRI recordings. This ‘recording’ actually
consisted of several concatenated datasets, thus creating artificial nonstationarity. Regions of interest are indicated by warmer colors. Application of the
filtering procedure yields the temporal trajectory associated with each static correlation pair. The average of these trajectories over two regions of interest
(indicated by red squares) are shown. (B) In total, we obtain 12720 pairwise correlation trajectories. Use of the standard clustering technique k-means
yields a primary salient region of interest that closely matches the ‘warm’ regions in (A) (red indicates membership). (C) The mean of all trajectories
represented in (B), illustrating the (expected) nonstationarity underlying the static characterization in (A).

IV. DISCUSSION & FUTURE WORK

This note presents a bounded-observation Kalman filter
for estimating correlation dynamics in neural recordings. The
metric of interest – the Pearson correlation coefficient – is
constrained to [−1, 1], necessitating the inclusion of a Fisher
transform in the filter equations. Inversion of data to create a
surrogate measurement facilitates straightforward derivation
of the recursive filter equations and data-driven parametriza-
tion via the autoregressive least squares technique.

Under assumptions of independence, the consequent so-
lution can be tractably obtained, even in the case of high
dimensional data. We apply it to an example of fMRI data,
showing that it can yield meaningful trajectories. We note
that the results are relatively insensitive to the size of the sub-
windows used to obtain the correlation time series. In future
work, we will explore more principled ways of determining
this window size. We note, unsurprisingly, that in the absence
of filtering, the raw time series are exceedingly noisy and
difficult to visualize.

The method outlined here can serve as an efficient front-
end to downstream classification algorithms for extracting
salient spatiotemporal dynamics and/or rejecting artifacts and
noise. In future work, we plan to deploy the method in this
capacity in a more systematic study of correlation dynamics
in several neuroimaging recording modalities.
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