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Abstract— This paper presents an adaptive coherent 

averaging structure capable of removing broad-band 

interference from the electrocardiogram (ECG) while 

preserving the morphological features of the signal. The 

proposed structure improves the signal-to-noise ratio (SNR) of 

the adaptive line enhancer (ALE) while maintaining robustness 

to quasi-periodic signals. The least mean-square (LMS) and 

recursive least-square (RLS) adaptive algorithms are 

implemented. Analysis and comparison of the results is 

provided, leading to an optimized hybrid implementation. The 

cascade nature of the proposed structure is both scalable and 

suitable for implementation in real-time hardware. 

I. INTRODUCTION 

The electrocardiogram (ECG) is a recording of the heart’s 
electrical potentials over time. It provides physicians with a 
graphical representation of the heart’s functionality and is used 
to expose physiological and pathological irregularities of the 
cardiac rhythm and circulatory system. Unfortunately, 
multiple sources of interference contaminate the ECG signal 
during acquisition, corrupting the morphology and making it 
difficult for physicians to provide an accurate diagnosis. These 
sources of interference can be grouped into two categories: 
narrow-band and broad-band.  

The major contributing narrow-band interference are as 
follows: power line interference (PLI), baseline wander (BW), 
motion artifacts (MA) and electrode motion artifacts (EM). 
The remaining broad-band interference are as follows: 
electromyographic (EMG), and electrode contact noise. [1] 

Typically, the frequency of the narrow-band interference is 
either known in advance or can be determined through 
analysis. This allows for the interference to be attenuated by 
either a simple FIR notch filter or a slightly more complex 
adaptive noise canceller (ANC) as shown in [2]. The 
advantage of using an ANC over the more simplistic solution 
is that the filter can track the frequency of the interference if it 
drifts over time. It is discussed in [3] that even when the 
narrow-band interference exhibits spectral overlap with the 
ECG, a notch filter can be used with minimal effect to the ECG 
morphology. 

It is more difficult, however, to attenuate the broad-band 
interference when it shares the frequency spectra of the ECG. 
The reason for this is because the ECG is composed of 
multiple harmonic components, as shown in the lower plot of 
Fig. 1. Many linear adaptive approaches have been applied to 
remove the broad-band interference from the ECG including 
the use of an adaptive noise canceller by Yelderman et al. [4], 
the time-sequenced adaptive filter by Ferrara [5],  the adaptive 
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recurrent filter by Thakor and Zhu [3], the Fourier linear 
combiner (FLC) by Vaz et al. [6], the wavelet transform by Li 
et al. [7], and the adaptive comb filter (ACF) by Cyrill et al. 
[8]. There are advantages and disadvantages to each of these 
techniques, but all are sensitive to the quasi-periodic nature of 
the ECG. This makes their performance highly dependent on 
accurately determining the reoccurrence interval of the ECG 
complex, shown in the upper plot of Fig. 1. Determining this 
reoccurrence interval requires an additional pre-processing 
step that is usually done accomplished with a matched-filter 
and threshold. 

More recently, eigenanalysis techniques have been applied 
to remove the broad-band interference from the ECG as well. 
These include both principal component analysis and 
independent component analysis [10][11][12]. The two 
primary drawbacks of the eigenanalysis techniques are they 
require considerable more resources and computational time 
due to the increased computational complexity. This makes 
them less suitable for real-time processing. 

In this paper, an adaptive coherent averaging structure is 
presented to remove contaminating broad-band interference 
while preserving the morphological features of the ECG 
signal. Consecutive ECG complexes resemble each other and 
are generally uncorrelated with the interference, however, the 
time varying delay between complexes creates a quasi-
periodic nature. This nature is exploited by adaptively 
averaging multiple consecutive ECG complexes, thus 
improving the signal-to-noise ratio (SNR). The proposed 
structure requires no a priori knowledge of either the primary 
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signal or the interference. The cascade structure is scalable to 
a desired SNR and can be implemented in real-time hardware. 

The remainder of the paper is organized as follows: Section 
II describes the adaptive coherent averaging architecture. 
Section III presents analysis of the LMS and RLS adaptive 
algorithms. Sections IV analyzes the performance of the two 
adaptive algorithms. Conclusions are presented in Section V.  

II. DESCRIPTION OF THE ARCHITECTURE 

The adaptive line enhancement (ALE) structure, shown in 
Fig. 2, was introduced in 1975 by Widrow et al. [2] as a 
simplified form of the adaptive noise cancellation (ANC) 
structure. Both the ANC and ALE structures estimate narrow-
band signals corrupted by additive broadband noise or 
interference. However, the ALE structure has a distinct 
advantage over the ANC structure in that it only requires a 
single input. 

The primary input of the ALE structure, 𝑑(𝑘), is composed 
of the signal of interest and additive noise. The reference input 
is a time delayed version of the primary input. The derived 
reference input is processed with an adaptive transversal filter 
to form, 𝑦(𝑘), the adaptive filter output. The filter output is 
then subtracted from the primary input to produce the error 
signal, 𝑒(𝑘). For each sample, the adaptive algorithm 
recursively adjusts the weighting coefficients to minimize the 
expected error power.  

Since the ALE structure operates on a single input, it does 
not require a priori knowledge of the characteristics of the 
signal of interest or the additive noise. The ALE is able to 
accomplish this by exploiting the difference in correlation 
lengths between the signal of interest and the additive noise. 
This is accomplished by appropriately choosing the size of the 
delay between the primary input and the derived reference. 
After convergence, the output, 𝑦(𝑘), is the optimum estimate 
of the signal of interest present in the primary input. When 
attenuating additive white Gaussian noise (AWGN), the ALE 
only requires one delay element, due to the fact white Gaussian 
noise is independent and identically distributed (i.i.d). This 
case is known as a one-step adaptive linear predictor. 

 The proposed structure, termed adaptive coherent 
averaging (ACA), is show in Fig. 3. The ACA structure is a 
modified version of the ALE structure designed to be cascaded 
in order to provide a coherent average as the final output. The    
primary input, 𝑑(𝑘), the derived reference input, the adaptive 
filter output, 𝑦(𝑘), and the error signal, 𝑒(𝑘), are all the same 

as the ALE structure. A cascade output, 𝑐(𝑘), is the sum of the 
primary input, 𝑑(𝑘), and the adaptive filter output, 𝑦(𝑘).This 
output serves as the primary input to the next stage.  

The adaptive filter output, 𝑦(𝑘), of the ACA structure is 
defined as 

 

𝑦(𝑘) = ∑ 𝑤𝑖(𝑘)𝑥(𝑘 − 𝛥 − 𝑖),

𝑝

𝑖=1

 

( 1) 

 𝑦(𝑘) = 𝒘𝑇(𝑘)𝒙(𝑘 − 𝛥), ( 2) 

where [⋅]𝑇denotes transpose, 𝑝, is the filter order, and 𝒘(k) 
and 𝐱(𝑘 − Δ) are vectors defined as 

 𝒙(𝑘 − 𝛥) = [𝑥(𝑘 − 𝛥) … 𝑥(𝑘 − 𝛥 − 𝑝 + 1)]𝑇 , ( 3) 

and 

 𝒘(𝑘) = [𝑤1(𝑘) … 𝑤𝑝(𝑘)]𝑇 . ( 4) 

The error signal, 𝑒(𝑘), is the difference between the desired 
input and the filter output defined as 

 𝑒(𝑘) = 𝑑(𝑘) − 𝑦(𝑘), ( 5) 

 𝑒(𝑘) = 𝑥(𝑘) − 𝒘𝑇(𝑘)𝒙(𝑘 − 𝛥), ( 6) 

The cascade output, 𝑐(𝑘), is the scaled sum of the desired input 
and the filter output defined as 

 𝑐(𝑘) = 𝛼𝑛𝑑(𝑘) + (1 − 𝛼𝑛)𝑦(𝑘), ( 7) 

 𝑐(𝑘) = 𝛼𝑛𝑥(𝑘) + (1 − 𝛼𝑛)𝒘𝑇(𝑘)𝒙(𝑘 − 𝛥), ( 8) 

where, 𝛼𝑛, is the scale factor at stage 𝑛. For the remainder of 
this paper we set, α𝑛, to 

 
𝛼𝑛 =

𝑛 − 1

𝑛
, 

( 9) 

which provides equal weighting to each of the averaged 
values.  

The cascade form of the adaptive coherent averaging 
structure is shown in Fig. 4. The cascade form is composed of 
two block element types: the ALE and the ACA. Each block 
element has a primary input (P), a reference input (R) and a 
cascaded output (C). It is important to observe that the cascade 
output of a stage is the primary input to the next stage and that 

Fig. 2: The adaptive line enhancement structure Fig. 3: The adaptive coherent averaging structure 
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the input vector, 𝑥(𝑘), is used as the reference signal, with the 
greatest delay on the lowest stage.  

 The cascade output of a 4-stage ACA structure is defined 
as follows:  

 𝑐1(𝑘) = 𝒘1
𝑇(𝑘)𝒙(𝑘 − 𝑁𝛥), (10) 

 
𝑐2(𝑘) =

1

2
𝑐1(𝑘) +

1

2
𝒘2

𝑇(𝑘)𝒙(𝑘 − (𝑁 − 2)𝛥), 
(11) 

 
𝑐3(𝑘) =

2

3
𝑐2(𝑘) +

1

3
𝒘3

𝑇(𝑘)𝒙(𝑘 − (𝑁 − 3)𝛥), 
(12) 

 
𝑐4(𝑘) =

3

4
𝑐3(𝑘) +

1

4
𝒘4

𝑇(𝑘)𝒙(𝑘 − (𝑁 − 4)𝛥). 
(13) 

For an N-stage ACA structure, the following recursive 
eqaution can be used: 

 𝑐𝑛(𝑘) =

{
𝒘𝑛

𝑇(𝑘)𝒙(𝑘 − 𝑁𝛥), 𝑛 = 1
𝑛−1

𝑛
𝑐𝑛−1(𝑘) +

1

𝑛
𝒘𝑛

𝑇(𝑘)𝒙(𝑘 − (𝑁 − 𝑛)𝛥), 𝑛 = 2, … , 𝑁,
  

(14) 

where, 𝑛 ≤ 𝑁, denotes the output at a given stage. 

Using (14), it can be observed that the output of the final N-
stage ACA structure is an average of N, time delayed, and 
filtered input vectors shown below 

 

𝑐𝑁(𝑘) =
1

𝑁
[∑ (𝒘𝑖

𝑇(𝑘)𝒙(𝑘 − (𝑁 − 𝑖)𝛥)|𝑐𝑖−1(𝑘))

𝑁

𝑖=1

]. 
( 15) 

It is important to recall from Fig. 4 that the primary input to 
all stages subsequent to stage 1 is an enhanced version of the 
signal. Therefore, all subsequent stages have the capability to 
further enhance the input signal based on adaptive filter theory.  

III. ANALYSIS OF ADAPTIVE ALGORITHMS 

For our analysis we implement the least mean-square 
(LMS) and the recursive least square (RLS) adaptive 
algorithms.  

Although consecutive ECG complexes will resemble each 
other, the quasi-periodic nature of the ECG introduces a 
varying delay between complexes. This requires the adaptive 
algorithm to continuously adjust the filter weights, otherwise 
known as tracking.  

A. Least Mean-Squares (LMS) 

The LMS algorithm originally introduced by Widrow and 
Hoff in 1960 [13] is highly considered for its simple and robust 
gradient descent method. The algorithm minimizes the mean-
square error (MSE) as follows [14]: 

 𝐸[𝑒2(𝑘)] =  𝐸[(𝑑(𝑘) − 𝑦(𝑘))2], (16) 

 𝐸[𝑒2(𝑘)] = 𝐸[(𝑥(𝑘) − 𝒘𝑇(𝑘)𝒙(𝑘 − 𝛥))2], (17) 

 𝐸[𝑒2(𝑘)] = 𝐸[𝑥2(𝑘)]

− 2𝐸[𝑥(𝑘)𝒙𝑇(𝑘 − 𝛥)]𝒘(𝑘)
+ 𝒘𝑇(𝑘)𝐸[𝑥(𝑘 − 𝛥)𝒙𝑇(𝑘 − 𝛥)]𝒘(𝑘), 

(18) 

 𝐸[𝑒2(𝑘)] = 𝐸[𝑥2(𝑘)]
− 2𝑷𝑇𝒘(𝑘) + 𝒘𝑇(𝑘)𝑹𝒘(𝑘), 

(19) 

where, 𝐏, is the cross-correlation vector and, 𝐑, is the input 
correlation matrix defined as 

 𝑷 = 𝐸[𝑥(𝑘)𝒙𝑻(𝑘 − 𝛥)], (20) 

 𝑹 = 𝐸[𝒙(𝑘 − 𝛥)𝒙𝑻(𝑘 − 𝛥)]. (21) 

Widrow et al. have shown that by utilizing gradient descent 
to minimize the MSE of the quadratic function shown in (19), 
the optimum weight vector also known as the Wiener-Hopf 
weight vector shown below is achieved. [2] 

 𝒘𝑜𝑝𝑡 = 𝑹−1𝑷. (22) 

The LMS algorithm implements gradient descent through 
an iterative weight update given by 

 𝒘(𝑘) = 𝒘(𝑘 − 1) − 2𝜇𝑒(𝑘) 𝒙(𝑘 − 𝛥), (23) 

where, 1 𝜆𝑚𝑎𝑥 >⁄ μ > 0, is the step size. 

 

B. Recursive Least-Squares (RLS) 

The RLS algorithm minimizes the weighted sum of 
squared errors as follows: 

 
∑ 𝜆𝑛−𝑘

𝑛

𝑘=0

𝑒2(𝑘) =  ∑ 𝜆𝑛−𝑘

𝑛

𝑘=0

(𝑑(𝑘) − 𝑦(𝑘))2. 
(24) 

The expansion of this cost function is shown in [14]. 
Similar to LMS, the RLS algorithm implements an iterative 
weight update given by 

 𝒘(𝑘) = 𝒘(𝑘 − 1) − 𝑲(𝑘) 𝑒(𝑘), (25) 

where, 𝜆, is the forgetting factor and, 𝐊(k), is defined as 

 
𝑲(𝑘) =

𝑷(𝑘 − 1)𝒙(𝑘 − 𝛥)

𝜆 + 𝒙𝑻(𝑘 − 𝛥)𝑷(𝑘 − 1)𝒙(𝑘 − 𝛥)
, 

(26) 

and, 𝐏(k), is defined as 

 
𝑷(𝑘) =

1

𝜆
[𝑷(𝑘 − 1) − 𝑲(𝑘)𝒙𝑻(𝑘 − 𝛥)𝑷(𝑘 − 1)]. 

(27) 

 

Fig. 4: Cascade form of the ACA structure 
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IV.   PERFORMANCE ANALYSIS 

The output signal-to-noise ratio (SNR) was the criteria 
chosen for analyzing the performance of the ACA structure. 
The output SNR is defined as  

 
𝑆𝑁𝑅 = 10𝑙𝑜𝑔10 (

𝑠2(𝑘)

(𝑠(𝑘) − 𝑠̂(𝑘))
2), 

(28) 

where, s(k), is the uncorrupted ECG and, ŝ(k), is the enhanced 
ECG given by, 𝑦(𝑘), in (1). 

We used a synthetic ECG model introduced by McSharry 

et al. [15] in order to obtain an uncorrupted ECG signal. This 

model produces realistic, quasi-periodic ECG complexes 

based on three coupled ordinary differential equations. 

A comparison of the cascaded ACA results for both LMS 

and RLS are shown in Table 1. It is clear that RLS provides a 

greater initial gain for the original ALE, which becomes more 

noticeable as the SNR increases. However, the LMS provides 

the better multi-stage ACA gain, where RLS appears to 

remain relatively flat. 

The results of Table 1 lead us to modify the cascade 

structure from a homogenous LMS or RLS structure to one 

that takes advantage of the strength of each algorithm 

observed in the prior paragraph. The modified hybrid 

structure uses RLS in the ALE block of Fig. 4 and LMS in the 

remaining ACA blocks. Results of this hybrid configuration 

are shown in Table 2. 

V. CONCLUSION 

An adaptive coherent averaging structure capable of 

removing broad-band interference from the ECG while 

preserving the morphological features of the signal has been 

proposed. The cascade form of the ACA shows between 0.5 

and 5.0 dB SNR gain over the original ALE, dependent upon 

the input SNR.  

An optimized cascaded ACA structure was implemented 

using both RLS and LMS, achieving approximately 10dB 

gain over the input SNR. The cascade nature of the proposed 

structure is both scalable and suitable for implementation in 

real-time hardware.  

The proposed structure shows potential for enhancement of 

other biomedical recurrent signals as well as those found in 

Sonar and Radar.  
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Table 1: Output SNR for different input SNR of synthetically 

generated ECG with AWGN 

 Output SNR (dB) 

Input 
SNR 
(dB) 

Original ALE 2-Stage ACA 4-Stage ACA 8-Stage ACA 

LMS RLS LMS RLS LMS RLS LMS RLS 

-10 1.79 2.33 2.02 2.25 2.04 2.21 2.36 2.52 

-5 5.22 5.28 5.23 5.21 5.23 5.20 5.70 5.66 

0 8.76 8.75 8.95 8.72 9.35 8.72 10.23 9.25 

5 11.94 12.17 12.44 12.20 13.39 12.22 14.96 12.57 

10 14.17 15.68 14.84 15.93 16.39 16.17 19.16 16.22 

 

Table 2: Output SNR for Different Input SNR of Synthetically 

Generated ECG with AWGN 

 Output SNR (dB) for RLS-LMS Hybrid 

Input SNR 
(dB) 

Original 
ALE 

2-Stage 
ACA 

4-Stage 
ACA 

8-Stage 
ACA 

-10 2.33 2.28 2.25 2.56 

-5 5.28 5.23 5.28 5.83 

0 8.75 8.91 9.29 10.23 

5 12.17 12.74 13.55 15.01 

10 15.68 16.71 17.75 19.80 
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