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Abstract— Borderline personality disorder (BPD) is a serious 

mental illness that can cause significant suffering and carries a 

risk of suicide. Assigning an accurate diagnosis is critical to 

guide treatment. Currently, the diagnosis of BPD is made 

exclusively through the use of clinical assessment; no objective 

test is available to assist with its diagnosis. Thus, it is highly 

desirable to explore quantitative biomarkers to better 

characterize this illness.  In this study, we extract spectral power 

features from the power spectral density and cross spectral 

density of resting-state fMRI data, covering 20 brain regions and 

5 frequency bands. Machine learning approaches are employed 

to select the most discriminating features to identify BPD. 

Following a leave-one-out cross validation procedure, the 

proposed approach achieves 93.55% accuracy (100% specificity 

and 90.48% sensitivity) in classifying 21 BPD patients from 10 

healthy controls based on the top ranked features. The most 

discriminating features are selected from the 0.1~0.15Hz 

frequency band, and are located at the left medial orbitofrontal 

cortex, the left thalamus, and the right rostral anterior cingulate 

cortex. The high classification accuracy indicates the 

discriminating power of the spectral power features in BPD 

identification. The proposed machine learning approach may be 

used as an objective test to assist clinical diagnosis of BPD. 

Index Terms- borderline personality disorder (BPD), 

functional magnetic resonance imaging (fMRI), spectral power, 

feature selection, classification 

I. INTRODUCTION 

Borderline Personality Disorder (BPD) is a serious and 
complex mental illness characterized by unstable moods, 
behavior, and relationships [1]. It affects about 1.6% of 
Americans age 18 or older [2]. Research on the possible 
causes and risk factors for BPD is still at a very early stage 
and its underlying mechanisms remain unclear. Furthermore, 
BPD is often either underdiagnosed or misdiagnosed [1]. A 
major limitation to accurate diagnosis is that current BPD 
diagnosis is based on a person’s self-reported symptoms and 
a clinical assessment by a mental health professional. There 
is no objective test which can diagnose the disease or verify 
a clinical assessment. Therefore, it is highly desirable to 
explore quantitative, robust and interpretable biomarkers for 
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BPD, which would facilitate the clinical diagnosis and help 
in gaining knowledge about the physiological basis of the 
illness.  

Neuroimaging studies have reported some consistent 
findings about structural and functional changes of the brain 
associated with BPD, mainly at the fronto-limbic regions. 
For example, magnetic resonance imaging (MRI) studies 
have found a reduced volume of the hippocampus, amygdala 
orbitofrontal cortex (OFC), and anterior cingulate cortex 
(ACC) in BPD patients [3, 4]. Functional MRI (fMRI) 
studies have also shown abnormal brain activity and 
connectivity at these regions using experimental paradigms 
that elicit a response to facial expressions [3, 4]. These 
findings suggest the potential of imaging based brain patterns 
as biomarkers for BPD identification. However, 
neuroimaging literature to date has two shortcomings. First, 
these studies examined each brain region separately without 
considering the combination effect of different regions.  
Second, these studies made inferences at the group level 
based on traditional statistical hypothesis, which do not 
provide information about the predictive ability of the 
patterns when applying to new subjects.   

To overcome these limitations, we apply machine 
learning based pattern recognition and classification 
techniques, which can analyze multiple brain regions at the 
same time. Machine learning techniques are now routinely 
applied to analyze brain imaging data for the identification 
and predication of various brain diseases, such as 
schizophrenia, epilepsy, major depressive disorder, etc. 
However, the applications of such techniques to explore 
imaging-based biomarkers for BPD have not been 
sufficiently investigated. A recent study reported 80% 
accuracy in classifying 25 BPD patients from 25 healthy 
subjects using structural MRI patterns combined with 
Support-Vector-Machine classifier [5]. However, no 
classification result has ever been reported using fMRI data.  

Motivated by the above considerations, we explore 
spectral-spatial fMRI features for BPD identification by 
machine learning approaches. The key contributions of this 
work are two-fold: selection of spectral power features and 
machine learning based classification. First, we extract 
spectral power features from the power spectral density 
(PSD) and cross power spectral density (CPSD) of resting-
state fMRI (rs-fMRI) data covering 20 brain regions and 5 
frequency bands. PSD describes how the strength of a signal 
is distributed in the frequency domain while CPSD describes 
how the strengths of two signals are shared in the frequency 
domain. The spectral power is the sum of the PSD or CPSD 
values in a frequency band, which represents the total power 
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in that band. To the best of our knowledge, this feature set 
has never been studied for BPD identification. Second, we 
have designed a machine learning based feature ranking and 
classification scheme. The feature ranking algorithm helps to 
select a small subset of most discriminating features, based 
on which a classifier is trained to distinguish BPD patients 
from healthy controls.  

II. METHODS 

Signal processing approaches are used to extract spectral-
spatial features from rs-fMRI data. A leave-one-out cross 
validation (LOO-CV) [6] procedure is strictly followed 
during feature selection and classification. Each time, 30 
subjects are used for feature selection and classifier training, 
while the other one subject is used for testing the 
classification accuracy. The procedure is repeated 31 times 
until all subjects have been used as testing subject once.  The 
systematic framework of the study is shown in Figure 1. 
Details of each part are explained below. 

 

A. Subject 

Twenty-one BPD patients (7 male) aged 20 to 45 (mean 
29 ±7.1), and 10 healthy control subjects (4 male), aged 19 
to 45 (mean 27 ±7.5) participated in this study. None of the 
control subjects met criteria for a psychiatric or neurological 
disease or had any major medical illnesses. All the patients 
met the DSM-IV-TR criteria [7] for BPD diagnosis. In order 
to reduce confounds associated with diagnostic comorbidity, 
the patients included in this study do not have a history of 
any psychotic disorder, bipolar disorder, major depressive 
disorder with psychotic features, obsessive-compulsive 
disorder, generalized anxiety disorder, social phobia, or post-
traumatic stress disorder. All the subjects gave written 
informed consent before entering the study. The study was 
approved by the University of Minnesota Institutional 
Review Board.  

B. MRI data acquisition & pre-processing  

Structural and functional MRI data were acquired at the 
University of Minnesota’s Center for Magnetic Resonance 
Research using a Siemens 3T TIM Trio scanner. Whole-
brain anatomical images were acquired using a T1-weighted 
high-resolution magnetization prepared gradient echo 
(MPRAGE) sequence: TR = 2530ms; TE = 3.65ms; TI = 
1100ms; flip angle = 7 degrees; 1 mm slices, FOV = 256, 
voxel size 1x1x1 mm; GRAPPA =2. The six-minute resting-
state fMRI scans were obtained using 180 contiguous echo 
planar imaging (EPI) whole brain volumes with TR = 
2000ms; FOV = 256; voxel size 3.43x3.43x3.43 mm; 34 
slices; 64x64 matrix, during which subjects were instructed 
to relax, try not to think about anything in particular, and 
remain awake with their eyes closed.   

FreeSurfer [8] was used to process the T1 data including 
brain extraction and parcellation of data into a standard set 
of anatomically-based regions of white and grey matter. 

FreeSurfer output was visually inspected; when any errors 
were identified (N=2) they were manually corrected on a 
slice-by-slice basis. The processed T1 data was registered to 
the rs-fMRI data using bbregister. The rs-fMRI processing 
was mainly conducted using tools from the FMRIB software 
library [9]. Initial processing included brain extraction and 
motion correction. A denoising procedure was applied 
incorporating RETROICOR [10] to remove physiological 
noise caused by cardiac and respiratory cycles as well as any 
linear trends. Correction for magnetic field inhomogeneity-
induced geometric distortion was conducted using the field 
map. FreeSurfer-generated regions of interest (ROIs) for 
lateral ventricles (cerebrospinal fluid; CSF) and white matter 
(WM) were aligned to rs-fMRI data using FLIRT [9]. Mean 
BOLD time series within these ROIs were extracted using 
fslmeants. We performed a regression of each other voxel’s 
time series on eight nuisance variables: WM time series, CSF 
time series, and the six motion parameters. Data scrubbing 
was performed following [11] excluding any volume with a 
DVARS value exceeding 8 and/or a framewise dependent 
(FD) value exceeding 0.5, along with the previous volume 
and the two following volumes. Averaged time series from 
20 FreeSurfer-based ROIs including: left and right rostral-
ACC, amygdala, thalamus, insula, caudal-ACC, medial-
OFC, precuneus, posteriorcingulate, hippocampus and 
parahippocampus, were used for further analysis. 

C. Feature extraction 

Spectral power of the rs-fMRI data is used as the feature 
for BPD classification. First, the PSD of the fMRI signal 
from each of the 20 regions, and the CPSD for each of the 
190 region pairs were estimated using Welch method [12]. 
Next, define 4 frequency sub-bands: B1 (0.01~0.05Hz), B2 
(0.05~0.1Hz), B3 (0.1~0.15Hz), B4 (0.15~0.2Hz), and a total 
band B5 (0.01~0.2Hz). The spectral power of PSD for each 
band is defined as the sum of the PSD within each band.  

 ( , ) ( , ), 1, . . . , 20. 1, . . . , 5 .

j

P S D
f B

P i j P S D i j i j



                (1) 

where i and j are the indices for regions and bands, 

respectively. The size of the 
P S D

P  feature set is 20 regions * 

5 frequency bands = 100. 

Similarly, the spectral power of CPSD is defined as the 
sum of CPSD within each band for each region pair.   

 ( , ) ( , ), 1, . . . , 190. 1, . . . , 5 .

j

C P S D
f B

P i j C P S D i j i j


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where i and j are the indices for region pairs and bands, 

respectively. The size of the 
C P S D

P  feature set is 190 region 

pairs * 5 frequency bands = 950.  

D. Feature ranking 

Feature selection is an important and necessary step to 
prevent classifier overfitting, especially when the sample size 
is smaller than the dimensionality of the feature space, as in 
this application. Feature selection not only provides more 
cost-effective and more accurate predictors, but also helps in 
locating the most relevant frequency ranges and brain 
regions that contribute to the discrimination. In this study, 

 

Figure 1. Framework of the study 
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we employed the minimum redundancy maximum relevance 

(mRMR) criteria [13] to rank the 
P S D

P  and the 
C P S D

P  

feature sets. The mRMR algorithm selects features according 
to the maximal statistical dependency criterion based on 
mutual information I. Mutual information based feature 

selection aims at finding a feature set S with m features { }
i

x , 

which jointly have the largest dependency on the target class 
c.     

  m a x ( , ) , ( ; ) / .

i

i
x S

D S c D I x c S



                                  (3) 

Features selected according to the maximal dependency 
criterion could have large redundancy. When two features 
highly depend on each other, the respective class-
discriminative power would not change much, if one of them 
was removed. Therefore, the following minimal redundancy 
condition can be added to select mutually exclusive features:      

2

,

m in ( ) , ( , ) / .

i j

i j
x x S

R S R I x x S



                                  (4) 

Finally, an operator ( , )D R is defined in terms of 

dependency D and redundancy R. The mRMR criterion 
solves the optimization problem given by: 

 m ax ( , ) , .D R D R                                                  (5) 

E. Classification 

We employed the Gaussian Mixture Model (GMM) [6] 
classifier to distinguish the patients from the controls, based 
on the top ranked spectral power features. GMM classifier 

classifies a sample x  to the class 
i

C  that yields the largest 

posterior probability ( | )
i

P C x . According to Bayes’ 

Theory,  
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where ( | )
i

P Cx  is called the class likelihood; ( )
i

P C is the 

relative probability for each class and is called the prior 

probability. Since the denominator ( )P x is the same for both 

classes, the decision rule becomes: 
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Assume the features are normally distributed within each 
class: 

11
( | ) ( ex p [ ( ) ( ) ]) / (2 ) | |

2

T d

i
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
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where d is the dimension of the feature space; 
i

m is the mean 

vector of class 
i

C  and 
i

S  is the corresponding covariance 

matrix; 
1

N  and 
2

N  are the total number of samples in 

classes 
1

C  and 
2

C , respectively. Estimates of 
i

m , 
i

S , and 

the prior probability ( )
i

P C can be obtained using maximum 

likelihood (ML) method for each class.  
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III. EXPERIMENTAL RESULTS 

A. Classification Results 

The performance of the proposed feature selection and 
classification scheme was evaluated using: accuracy, 
specificity and sensitivity, which represent the percentage of 
correctly classified subjects, controls and patients, 
respectively. 

In Table I, we list the classification results using 
P S D

P  

and 
C P S D

P  features, respectively. Besides GMM, two other 

commonly used classifiers: linear discriminant analysis 
(LDA) [6] and k-nearest neighbor (kNN) [6] are also tested 
for comparison. The highest classification accuracies are 
achieved using GMM classifiers with top 9 features ranked 
by the mRMR algorithm, for both feature sets. 19 out of 21 
BPD patients and all the 10 control subjects are correctly 
classified while 2 patients are misclassified as controls.  

 

B. Feature Analysis 

To explore the brain locations and frequency ranges that 
are most related to the discrimination between controls and 
patients, we show the region and frequency distributions of 

top 
P S D

P  and 
C P S D

P  features with P-value <=0.005 in 

Figures 2 and 3, respectively. Note that each 
P S D

P feature is 

associated with one frequency band and one ROI while each 

C P S D
P feature is associated with one frequency band and two 

ROIs. The histograms are obtained by counting the number 
of occurrences of each region and each band based on all 

P S D
P  and 

C P S D
P  features with P-value <=0.005.  

From Figure 2, we observe that the most discriminating 
brain regions are the bilateral thalamus, the bilateral 
precuneus, right rostralACC and left medialOFC. These 
regions are key regions which have been shown to have 
structural and functional abnormalities in BPD patients. 
Other brain regions do not show significant spectral power 
difference between groups.  In Figure 3, we observe that top 
ranked features exist in all frequency band between 0.01~0.2 
Hz, and B3 (0.1~0.15 Hz) occurs as the highest occurrence.    

TABLE I.  CLSSIFICATION RESULTS WITH 
P S D

P  AND  
C P S D

P  

FEATURE SETS, USING LDA, KNN AND GMM CLASSIFIERS   

feature classifier 
# of 

feats. 
accuracy specificity sensitivity 

P S D
P  

LDA 10 0.8065 0.6 0.9048 

kNN 1 0.8065 0.9 0.7619 

GMM 9 0.9355 1 0.9048 

C P S D
P  

LDA 3 0.8387 0.7 0.9048 

kNN 1 0.8065 1 0.7143 

GMM 9 0.9355 1 0.9048 
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Furthermore, we show the boxplots of top two 
P S D

P  and 

C P S D
P  features with lowest p-value in Figures 4 and 5, 

respectively. All the 4 features were selected form the 
0.1~0.15Hz frequency band. The patient group shows an 

increased 
P S D

P  at the left medialOFC and a decreased 
P S D

P  

at the left thalamus. Patients also show an increased 
C P S D

P  

between the right rostralACC and the left medialOFC 

regions, as well as a decreased 
C P S D

P  between the left 

thalamus and the right precuneus regions. 

 

 

IV. CONCLUSIONS 

In this study, we explore spectral-spatial fMRI patterns 
for BPD identification. Specifically, spectral power was 
extracted from the PSD and CPSD of rs-fMRI data, covering 
20 ROIs and 5 frequency bands. Machine learning based 
feature ranking and classification approaches were employed 
to distinguish BPD patients from healthy controls. We 
identified several key regions and a frequency range which 
show significant spectral power difference between groups. 
Based on the top ranked features, 93.55% overall 
classification accuracy is achieved in discriminating 21 BPD 
patients from 10 healthy control subjects, following the 
LOO-CV procedure. High accuracy indicates potential of the 
identified spectral power features to become biomarkers for 
BPD identification. The feature ranking and classification 
scheme may be used to design a computer tool for assisting 
clinical diagnosis of BPD.  

A limitation of this study is the small sample size (31 
subjects). Sample size is especially important in light of 
heterogeneity of BPD. Therefore, the results of this work 
need to be interpreted with caution and need to be validated 
in future studies. Future work will be directed towards 
exploring other types of imaging patterns and more efficient 
feature selection and classification algorithms for BPD 
identification and tracking changes with treatment. 
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      (a)                                             (b) 

Figure 5.  Boxplots of top 2 
C P S D

P features: (a) right rostralACC-left 

medialOFC, [0.1, 0.15 Hz], p-value = 0.0028, (b) left thalamus-right 

precuneus, [0.1, 0.15 Hz], p-value = 0.0033 

 
      (a)                                             (b) 

Figure 4.  Boxplots of top 2 
P S D

P  features: (a) left medialOFC, [0.1, 0.15 

Hz], p-value = 0.0038, (b) left thalamus, [0.1, 0.15 Hz], p-value = 0.0039 

 
Figure 3.  Number of occurrences of the 6 frequency bands based on all 

P S D
P  and 

C P S D
P features with p-value <=0.005. 

 
Figure 2.  Number of occurrences of the 20 regions based on all 

P S D
P  and 

C P S D
P features with p-value <=0.005. 
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