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Abstract— Clinical sleep scoring involves tedious visual 

review of overnight polysomnograms by a human expert. Many 

attempts have been made to automate the process by training 

computer algorithms such as support vector machines and 

hidden Markov models (HMMs) to replicate human scoring. 

Such supervised classifiers are typically trained on scored data 

and then validated on scored out-of-sample data. Here we 

describe a methodology based on HMMs for scoring an 

overnight sleep recording without the benefit of a trained initial 

model. The number of states in the data is not known a priori 

and is optimized using a Bayes information criterion. When 

tested on a 22-subject database, this unsupervised classifier 

agreed well with human scores (mean of Cohen's kappa > 0.7). 

The HMM also outperformed other unsupervised classifiers 

(Gaussian mixture models, k-means, and linkage trees), that are 

capable of naive classification but do not model dynamics, by a 

significant margin (p < 0.05).  

I. INTRODUCTION 

Sleep quality is a critical determinant of human health 
and performance. Clinical evaluation of disordered sleep 
involves overnight polysomnography (PSG) following 
specific guidelines [1]. A PSG recording includes 
electroencephalogram (EEG), electrooculogram (EOG), 
electromyogram (EMG), and other measurements, and is 
scored by an expert in 30 s epochs into discrete vigilance 
states, namely wakefulness (Wake), rapid eye movement 
(REM) sleep, and non-REM (NREM, stages 1-3) sleep [2]. 
Scoring sleep is difficult and tedious. Many statistical 
classifiers have been developed to automate this process and 
replicate human performance [3], sometimes from a single 
EEG channel alone [4-5]; most require supervision in the 
form of expert heuristics or a statistical model derived from 
expert-scored training data to stage sleep; and all are used in 
essentially the same manner: i.e., by fitting a model to scored 
data from one set of subjects and validating it on out-of-
sample data from another set [3-5]. This gives confidence 
that the model will work reliably on future subjects. 

Supervised classifiers are constrained by the need for 
(and subjectivity/variability of) human scoring of training 
data. No method to date generates a reasonable first-pass 
hypnogram from a sleep recording without supervision: i.e., 
without previous training. Even hidden Markov models 
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(HMMs), which, strictly speaking, are unsupervised 
classifiers, are first fitted to training data in which all 
vigilance states are known to occur, and then used to score 
test data [6-8]. But in the naive scenario, no initial model is 
available; nor may all vigilance states occur. Here, we 
propose a method for using HMMs to score overnight sleep 
without the benefit of a trained classifier. While supervised 
classifiers need labeled training data, unsupervised classifiers 
like the HMM find natural partitions in data that could map 
signal features onto distinct hidden states. In principle, PSG 
epochs can be mapped onto vigilance states without prior 

trainingwhich a supervised classifier cannot do. This could 
yield a useful first-pass score for a new patient, to be refined 
by an expert if reasonably accurate.  

Implicit in HMMs is the notion of dynamics, that the 
state follows a trajectory whose likelihood depends on the 
previous state at any instant. In contrast, most classifiers are 
"static", i.e., they do not incorporate context when 
determining state, unless subsequent steps filter classifier 
output: for instance, a minimum duration criterion, median 
filtering, exponential updating, and so on. Research on sleep 
dynamics suggests that human sleep is fairly well represented 
by a Markov chain model [9]. Since HMMs are built on 
Markov chains, this may explain their popularity in sleep 
scoring. However, other unsupervised but "static" classifiers 
(e.g., Gaussian mixture models or GMMs, k-means, k nearest 
neighbors, linkage trees, etc.) that cluster the feature space to 
score sleep from PSG features have been investigated in the 
past [10-11]. Whether the assumption of Markov dynamics 
in HMMs truly translates into better predictive performance 
compared to other unsupervised static classifiers has not 
been verified. Here, we test a methodology for naive scoring 
of human sleep using HMMs. We also compare HMM 
performance with three unsupervised static classifiers to see 
if the added computational burden imposed by Markov 
dynamics is justified by classification performance. 

II. METHODS 

Signal features extracted from 30s epochs of overnight 
PSGs were modeled using four unsupervised classifiers: an 
HMM, a GMM, a k-means classifier, and a linkage tree. The 
number of states in each was optimized by an information 
criterion. Classification accuracy was assessed against 
expert-scored hypnograms. 

A.  Data source and feature extraction 

This analysis is based on a Physionet database of 22 
overnight expert-scored PSGs (6-9 h each; 100 Hz sampling) 
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of healthy subjects (male/female, 18-79 years old, mean ~40) 
without medications [12-13]. All analysis was performed 
using Matlab

TM
 (Mathworks, Natick, MA). The hypnograms, 

which mapped 30s epochs of data onto six states (NREM 1-
4, REM, and Wake) were relabeled per the current 
guidelines of the American Academy of Sleep Medicine [2] 
by combining NREM stages 3 and 4. Hence, each 
hypnogram contained up to five labels: N1, N2, N3 for 
NREM, R for REM, and W for Wake. The Fpz-Cz signal 
from each subject was bandpass-filtered into seven distinct 
frequency bands, specifically: 𝛿L (0.5-2 Hz), 𝛿H (2-4Hz), 𝜽 
(4-9Hz), 𝜶 (9-12Hz), 𝝈 (12-16Hz), 𝜷 (16-30Hz) and 𝜸 (30-
45Hz) using 3

rd
 order Butterworth IIR filters. The mean 

power in these bands was estimated in 30s epochs and 
combined into "sleep variable" ratios:  

S1 = (𝛿L + 𝛿H) / 𝜽                                                            (1) 

S2 = (𝜶 + 𝜷 + 𝝈 + 𝜸) / (𝛿L + 𝛿H + 𝜽)                          (2) 

S3 = 𝛿L / 𝝈                                                                        (3) 

Each variable is designed to emphasize contrast between 
EEG rhythms observed in different states of vigilance: S1 
captures differences between N3 (strong delta) and R (strong 
theta), S2 distinguishes N3 (low frequency) from W 
(broadband activity), and S3 discriminates N2 (spindle 
activity). This three-dimensional vector of features was 
expressed on a logarithmic scale, which makes the 
observation distribution approximately Gaussian, and used as 
the input to the unsupervised classifiers to be evaluated. 

B.  Modeling the data using unsupervised classifiers 

 The main aims of this analysis are: 1. To perform 
unsupervised sleep scoring using an HMM; and 2. To 
compare HMMs, which incorporate dynamics as Markov 
state transitions, with other unsupervised but static classifiers 
(GMMs, k-means clustering, and linkage trees) that do not 
have dynamics. In effect, GMMs and HMMs are parametric 
since they are based on a probability model, while k-means 
and linkage trees are nonparametric since they are based 
solely on proximity in the feature space.  

Gaussian mixture models. A GMM expresses the 
distribution of S = [S1 S2 S3]

T
 as a linear mixture of 

Gaussians: p(S | Θ) = ∑ αk p(S | θk). Each component k 
corresponds to one of ns model states, and θk is 
parameterized by a mean vector and covariance matrix; αk is 
a mixing coefficient. Once ns is fixed, model parameters are 
determined from sample PSG data using maximum 
likelihood estimation. Assuming samples are independent 
and identically distributed, optimal parameters are those that 
maximize the function L(Θ | S1:N) = ∏ p(Si | Θ), which 
expresses the joint likelihood of all samples i = 1:N. L (or 
more commonly, log L) is optimized via an Expectation-
Maximization (E-M) algorithm [14], in which an initial 
parameter guess is iteratively refined in a way that local 
convergence is guaranteed. For each subject, we used 
multiple randomized seeds and selected the solution with 
largest log L. Then, we labeled each epoch by the GMM 
component that maximized its probability density.  

Hidden Markov models. An HMM is a dynamical model of a 
sequence or time series [15] that assumes each observation 
Sk in a sequence to be randomly drawn from a probability 
distribution conditioned on an underlying nominal state Qk. 
Sk is conditionally independent of Sk-1 given Qk. The 
evolution of state Qk over time follows the Markov property: 
i.e., given Qk, the distribution of Qk+1 is independent of Qk-1, 
Qk-2, and so on [16]. Here, we model the observation density 
p(S | Q) as a Gaussian distribution where Q is one of ns 
discrete model states that relate to the different states of 
vigilance. To model a PSG recording using an HMM, its 
parameters must be fixed: namely, a set of priors π and 
emission models p(S | Q), one for each of the ns states; and a 
matrix of transition probabilities Ptr between any two states. 
Algorithms are available for statistical inference using 
HMMs [16] that generally involves the recursive application 
of Bayes rule to compute the probability of a sequence of 
emissions from an arbitrary sequence of states, and for 
decoding the most likely sequence of states given an 
arbitrary sequence of emissions (the Viterbi algorithm). An 
E-M variant known as the Baum-Welch algorithm is used to 
estimate HMM parameters for a sample observation 
sequence S1, S2,...,SN [14]; since the source states are not 
known a priori, the HMM is an unsupervised model. Since 
we have chosen a Gaussian emission model for each state, 
we used the GMMs described in the previous section as the 
initial guesses of the priors and observation densities of the 
HMM. Once the model is determined, the Viterbi algorithm 
is used to decode the sequence of hidden states Q0, Q1,...,QN 
most likely to have generated the sequence of emissions. As 
for GMMs, the likelihood L associated with the model can 
be computed for a sequence of observations. 

k-means clustering. This is a well-known unsupervised 
algorithm, used here to cluster sample vectors of sleep 
variables into different states. The algorithm starts with k 
randomly selected prototypes or centroids (for k states), and 
then associates each data sample with a centroid based on the 
Euclidean distance between them in the feature space. The 
centroids are then recomputed based on the newly 
determined membership of each state. State labels and 
centroids are recursively updated until convergence [17]. 

Hierarchical clustering. A linkage tree is a clustering 
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Figure 1. Criteria (shown for one sample subject) for selecting the 

number of model states ns that best fits the data. Left: Bayes 

information criterion (scaled by the dynamic range) passes through a 

minimum that determines ns for GMMs and HMMs. Right: Optimal 

ns for k-means and linkage tree classifiers is chosen as the lowest value 

for which an F-statistic representing relative variance between states 

exceeds 90%. 
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technique that builds a hierarchy of clusters using a “bottom 

up” approach. It starts with each observation forming its own 

cluster and then merges clusters based on their proximity to 

each other to move up the tree [18]. The tree therefore 

contains successively smaller numbers of clusters (states) at 

each level until there is only one cluster encompassing all the 

data at the top. The level at which the tree is "cut" or 

terminated determines the number of states, and their 

descendants on the tree inherit their labels. 

C. Optimization of the number of classifier states  

 For an unsupervised classifier, the number of model states 
ns must first be specified. Since the optimal number of states 
is not known a priori, a criterion is needed for the value of 
ns that best predicts the scatter observed in the data. While a 
large ns may give a better fit, the parameter space needs to 
be kept manageable and overfitting avoided. Also, ns should 

be closebut not necessarily equalto the actual number 
ms of vigilance states in the sample: some model states may 
be sub-states of one vigilance state that together determine 
its distribution in the feature space. 

 For the parametric classifiers (GMM and HMM), we 
constructed models with ns varying from 2 to 15 Gaussian 
components. Then the optimal model was chosen by using 
the Bayes information criterion (BIC) [19], which balances 
conflicting terms representing the goodness-of-fit of the 
model and the degrees of freedom respectively: 

BIC = -2 log L + k log n                                                 (4) 

L
 
is the likelihood of the data given the probability model, n 

is the number of observations (i.e., epochs of data), and k is 
the model degrees of freedom based on the total number of 
fitted parameters in the model. Fig. 1a demonstrates how 
BIC varies with ns in a GMM fitted to data from an arbitrary 
subject (blue graph) whose recording contained all five 
vigilance states (ms = 5). A GMM with ns = 6 seems optimal 
for this subject. For an HMM of the same subject's data a 
choice of eight model states (ns = 8) is deemed optimal. The 
excess model states turn out to be subcomponents of 
vigilance states. For the nonparametric classifiers (k-means 
clustering and linkage trees) there is no probabilistic model, 
so a likelihood measure cannot be defined. Instead, we 
specify a criterion inspired by the F-statistic typically used in 
analysis of variance. We selected the optimal ns as the 
smallest value for which the ratio R of the variance between 
clusters to the total variance crossed 90%. For the sample 
subject in Fig. 1b, R monotonically increases with ns for the 

k-means algorithm and crosses 90% at ns = 11. Similarly, 
ns = 12 is optimal for a linkage tree classifier extracted from 
the same subject's data. 

D. Mapping the model states to vigilance states  

For each sleep record, dynamic (HMM) and static 
(GMM, k-means and linkage tree) unsupervised classifiers 
with ns optimized by BIC or R were constructed. The 
mapping between model states and vigilance states is not 
known a priori. In fact, multiple model states may form sub-
states of a particular vigilance state; and not all vigilance 
states may occur in a sleep record (e.g., subject never 
reaches N3, or the recording does not include W). Whichever 
the case, we assume that a sleep physician could quickly 
inspect a few samples of each model state and fix the true 
vigilance state, based on which the hypnogram can easily be 
relabeled. In our analysis, we determine the mapping from 
model states to vigilance states by computing Cohen's kappa 
[20], which is a widely used statistical measure of inter-rater 
agreement. Since kappa takes chance agreement between the 
nominal states into account, it is a more reliable measure 
than just the overall proportion of agreement between labels. 
We applied the mapping that optimized Cohen's kappa for 
each subject before assessing the performance of each 
classifier. 

E. Assessment of classifier performance  

Classifier performance was assessed by comparing 
model-predicted labels against true hypnogram labels using 
conventional metrics of detection sensitivity and specificity. 
The sensitivity (expected true positive rate) of a specific 
vigilance state reflects the proportion of actual sample 
epochs of that state correctly identified by the classifier. 
Conversely, the specificity (expected true negative rate) for a 
particular state is the proportion of other states not wrongly 
classified as the state of interest. Overall model performance 
was gauged by kappa while the ability to detect specific 
states was assessed using sensitivity and specificity.  

III. RESULTS 

 Fig. 3 gives the performance of optimal static and dynamic 
classifiers on a 22-subject database in terms of Cohen's 
kappa. The static classifiers appeared to have similar 
performance with kappa of about 50%, which is considered 
moderate agreement with expert sleep scores. GMMs and 
linkage trees performed slightly but not significantly better 
than k-means. HMMs significantly outperformed the static 
classifiers (p < 0.05 by ANOVA), with a median kappa of 
over 70% (substantial agreement). 

 Trends in classifier performance in terms of sensitivity and 
specificity for each vigilance state (Table I) mirrored overall 
agreement (kappa), with some differences. Linkage trees and 
k-means gave very similar sensitivity and specificity for all 
five states. GMMs performed significantly better overall, 
except for lower sensitivity and higher specificity to N2, than 
the other static classifiers. HMMs gave comparable or 
significantly higher sensitivity and specificity for all states 
than any of the static classifiers. 

 
Figure 2. HMM classifier output for a sample overnight sleep 

recording. Input features S1, S2, and S3 are shown below the model-

generated  (black) and true (beige) hypnograms for the data (Cohen’s 

kappa = 0.8). 
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IV. DISCUSSION 

In this work, we compared HMMs with multiple static 
classifiers for clinical sleep scoring. The presumptive 
advantage gained by the empirical Markov chain 
representation of the dynamical sleep state transitions in the 
HMM has never been verified, but are now clear. Our other 
goal, to propose and test a means for obtaining reasonable 
initial sleep scores for an overnight recording without a 
previously trained model, also appears feasible. In this 
regard, we proposed a criterion for optimizing the number of 
states modeled by the classifier from the data without a priori 
information. This approach improved classification 
performance compared with similar studies [6-8], which are 
few in number and presume without justification that all 
stages of sleep are presented in each recording. Since the 
purpose of our HMM is to generate a first-pass 
segmentation, a human expert can quickly match up the 
model states with conventional vigilance states by reviewing 
a random sample of each model state. Moreover, our use of 
three simple power spectral features rather than a wide range 
of spectral /nonlinear EEG features [3-8] or auxiliary 
EMG/EOG features [8] results in a simple but more efficient 
automated sleep scoring technique. Use of the initial band 
power variables did not improve classifier performance 
despite the greater dimensionality. 
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Table I. Performance of unsupervised classifiers by vigilance state. 
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