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Abstract— This study examined characteristics of the brain 

networks related to upper limb grasp movements. EEG signal of 

4 patients with chronic stroke were analyzed during different 

motor tasks. We compared the brain networks involved in the 

Active and Motor Imagery tasks by using the centrality and 

small-worldness (SW). There was a statistically significant 

difference between the centralities of two motor tasks in motor 

cortices of affected hemisphere in the high beta band (21 – 30 

Hz). For SW, the Active task also decreased in the high beta 

band in contrast with the MI task. In this paper, we could 

support evidence that brain networks may different under the 

conditions of different motor tasks in both frequency and 

temporal domain. 

I. INTRODUCTION 

Previous studies obtained brain activation by 
electroencephalography (EEG) channels and compared the 
EEG power spectra of stroke patients and controls [1]. 
However, the pathways of various brain regions are still 
unclear because analysis of EEG power spectra hardly 
represents interactions in the brain.  

In existing studies, they represented brain network 
properties of stroke during motor tasks [2-4] . Wang et al. and 
Fallani et al. analyzed the brain networks of stroke patients 
using the finger-tapping test [4, 5]. Fallani et al. and Yan et al. 
studied the Motor Imagery (MI) network [6, 7]. Most existing 
studies analyzed each pattern of brain network according to 
type of motor tasks as the Active and MI tasks rather than 
identifying the distinction between the Active and MI tasks.  

Thus, we focused on examining this difference of network 
characteristics between the Active and the MI tasks. We 
mainly hypothesized centrality and SW of the Active task are 
bigger than those of the MI task with primary motor cortex as 
the center because our protocol focused on motor execution. 
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II. METHOD 

A. Participants 

Four stroke patients with upper limb monoplegia 
participated in this study. They had not individual difference 
by entering stable state of neuroplasticity [mean (standard 
deviation) age: 53.25 (5.5); years; 2 male and 2 female 
patients; Fugl-Meyer Assessment (FMA): 44.25(10.78), (Rt. 
4)]. With approval by Institutional Review Board of both 
Korea Institute of Science and Technology (KIST IRB; KIST 
2013-009) and Samsung Medical Center (SMC IRB; SMC 
2013-02-091), the participants enrolled and conducted the 
experiment at SMC. The inclusion criteria of participation 
were chronic stroke patients at least 3 months or more after 
onset with ages between 40 and 70 years. Patients with 
artificial pacemaker or with complaints of claustrophobia, 
pain from acupressure during the EEG experiment, or a 
decline of perception and an inability to follow the 
instructions of the researchers were excluded from this study. 

B. Experimental design 

In order to obtain the characteristics of brain networks of 
chronic stroke patients during upper limb movements for 
rehabilitation, participants performed grasp movements with 
the affected hand by collecting their EEG signals. The haptic 
device in the experiment was controlled by a DSP processor, 
as shown in Fig.1, and it was synchronized with a stimulation 
program by Flash

TM
. This stimulus of haptic was connected to 

EEG System (sampling rate: 2048 Hz; Active-two, 
Biosemi

TM
, Amsterdam, Netherlands). The system was 

developed by KIST and described in the previous study  [8].  

In experiment protocol, participants performed three 
different motor tasks: the Active task in which the participants 
performed the exercise themselves, the MI task in which they 
imagined the movement, and the Passive task driven by the 
device. All trials for a participant were consisted of nine sets 
(3 sets per motor task). In this study, however, we only used 
the data for the Active and MI tasks to compare this two motor 
tasks. The experiment was conducted as shown in Fig.2, 
where the participants had to fix their gaze on the monitor. 
They then conducted the motor task for two second after the 
cue, held the movement for one second, and finally, returned 
to their original state during the “return phase”. 
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Figure 1.  Haptic device. (In this study, participants performed upper limb 

motor task as grasp movement.) 

 

Figure 2.  Experimental design. (In this study, participants randomly 

performed motor task after cue) 

C. Analysis 

 EEG data preprocessing 

After the 64 channels of EEG were down sampled to 256 
Hz, data were subjected to band-pass filtering from 1 to 80 Hz, 
and time extraction from -4 to 6 second. Noisy signals from 
the outside were removed by the EEG lab toolbox and applied 
to the Common average reference (CAR). The 64-channel 
EEG data that passed the above manipulations were separated 
into various frequency bands [mu (8 - 12 Hz), low beta (13 - 
20 Hz), high beta (21 - 30 Hz), and gamma rhythm (31 - 50 
Hz) that are related to sensorimotor rhythm].  

 Brain connectivity & graph theory analysis 

In order to determine correlations within the widely 
distributed neural networks, we calculated the phase 
synchronizations between two EEG channels with the phase 
locking value that calculates the phase difference by 
extracting the component of the signal phase [9]. Also we set 
time window as 1 second after extracted data from -1 to 5 
second, and analyzed the brain networks with the basic 
parameters of graph theory index, including the centrality and 
SW properties which formulas are described below [10]. Then, 
we set baseline from -1 to 0 second, and compared statistically 
graph theory index of each time window and baseline. 

i. Centrality 

Centrality indicates the relative importance of a node in the 

network. Thus, in this study, we used the node degree, which 

is the basic parameter measuring centrality. The node degree 

is obtained by the number of link connections between each 

node. 

 

                                 (1) 

: Degree of node i 

: Connection status between i and j 

ii. Small-worldness 

The properties of SW in a brain network indicating 
vigorous communication and greater efficiency in 
transmitting information is acquired by the next formula. This 
value is acquired by the clustering the coefficient and the 
characteristic path lengths, and this index value is bigger than 
1 if the network of each group has SW properties. 

 

                           (2) 

 

               (3) 

C : clustering coefficient 

 : clustering coefficient of random network 

 

              (4) 

L : characteristic path length 

 :  characteristic path length of random network 

 

III. RESULTS 

In this study, we highlighted the centrality and SW in order 
to find the differences between the Active and MI tasks. 

To  establish appropriate frequency bands that have 
significant difference of graph theory index between the 
Active and MI tasks according to time window, we performed 
two sample t-test (p<0.05) between motor tasks of the node 
degree and SW on C3. That is primary motor cortex in 
affected hemisphere and relate to movement of our protocol. 

Table Ⅰ shows the p-value of graph theory index depending 

on each frequency bands. There is statistically significant 
difference between two motor tasks in the high beta band.   

 

TABLE I.  SIGNIFICANT FREQUENCY BAND IN MOTOR TASK PHASE 

p-value 
Frequency band(Hz) 

Mu Low beta High beta gamma 

Node degree 0.1964 0.7497 0.0291* 0.1222 

SW 0.3538 0.3918 0.0106* 0.2534 

*. p<0.05 

 

For centrality, we found change in the node degree 
distribution for each time window of motor execution phase 
compared with baseline. The second and third column of Fig.3 
represents the difference based on baseline in the topoplots in 
the high beta band.  The red color indicates increasing values 
compared with baseline, and blue color indicates decreasing 
values. In visual inspection, the node degree of Active on 
affected hemisphere is increased in the initial motor task phase 
(0 - 1 s), and shift to unaffected hemisphere as time goes on. 
On the other hand, those of MI task have different 
characteristics. 
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Figure 3.  Differences in the node degree distributions and t-map. (Right 

hemisphere is contralateral side and left hemisphere is ipsiliateral side for 

affected hand. ) 

 

To identify statistical difference of network characteristics 
between the Active and MI tasks, we performed two sample 
t-test (p<0.01). The forth column of Fig.3 represents 
significant channels according to two motor tasks in each time 

window of the high beta band (21 - 30 Hz). In t-map, the 
square spot means that the node degree of the Active task is 
bigger than the MI task in each time window, and circle spot is 
contrast to that.  

Although there is no significant difference between two 
motor tasks in initial motor task phase, t-map during [1 - 2 s] in 
Fig.3 shows that the node degree of the Active task is statically 
bigger than MI task in affected hemisphere. Also parietal area 
during [3 - 4 s] and [4 - 5 s], “return phase” of grasp movement, 
is significantly bigger than MI task.   

Next, in order to find the properties of SW, we calculated 
the values of SW with clustering coefficient and characteristic 
path length, and the results are shown in Fig.4. The X-axis of 
Fig.4 represents the time window, and Y-axis of Fig.4(a) 
means value of SW and of Fig.4(b) means the change in the 
high beta band. Also the green squares are the values in the 
Active task, and the blue squares are the values in the MI task.  
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Figure 4.  The value of “small-worldness(SW)” of motor task in the high 

beta band (21 - 30 Hz). ((a) represents value of SW, and (b) shows the 

difference of SW depending on baseline [0 - 1 s]. Green squares indicate SW 
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of the Active task and blue squares indicate SW of the MI task. SW of the MI 

task is higher value than the Active task in the high beta band.) 

 
Fig.4(a) shows that values of SW in the Active and MI 

tasks are smaller than 1, which is generally minimum value for 
properties of SW. Fig.4(b) represents that the change of SW 
depending on baseline (-1 - 0 s) of the Active task is lower 
than that of the MI tasks. There are no significant difference of 
SW between Active and MI tasks according to each time 
window. However, SW of the Active task decrease based on 
baseline, whereas those of the MI task remain unchanged in 
visual inspection. 

IV. DISCUSSION 

In this study, we hypothesized that there would be 
differences in properties of the networks in the Active and MI 
tasks according to time window, and we found differences as 
to centrality and SW.  

Firstly, we found the high beta band (21 - 30 Hz) have 
meaningful area between the Active and MI tasks in motor 
execution phase. Our result is in the line with the  study of 
Gross et al., whose results represented the strong different 
task-dependent variations between static and dynamic 
condition in primary motor cortex and SMA during finger 
tapping in the beta band (13 - 24 Hz) [11]. 

Secondly, centrality of the Active task increase in motor 
cortex as like existing studies in fMRI and signal power 
analysis [1, 3]. However, the MI task do not represent similar 
characteristics. On the basis of difference above, phase of [1 - 
2 s], end point of motor execution, have statistical difference 
in the affected hemisphere (p<0.01). 

Thirdly, SW of two motor tasks in our study do not have 
properties of SW, even if Jin et al. represented that healthy 
group have properties of SW during rest and motor task [12]. 
Perhaps, this results are because of collapse in neural network 
by stroke [3]. Also, in contrast with centrality, SW of the 
Active task show the trend to be decreased depending on 
baseline, whereas the MI task have little change. This results 
show that brain network of the Active task have 
time-dependent properties than those of the MI task. 

In this study, we show different mechanism of the Active 
and MI tasks even if these motor tasks are focused on motor 
function. If both Active and MI tasks have motor intention, we 
want to obtain motor intention by comparing Active and MI 
tasks. Therefore, we expect to apply our results, which have 
significant temporal-dependent difference of two motor tasks, 
to BCI-rehabilitation system for stroke patients. 

V. CONCLUSION 

We found differences of the networks properties involved 

in the Active and MI tasks with respect to centrality and SW. 

Based on our analysis for the brain networks of stroke patients, 

we were able to explain the possibility depending on the 

temporal change of brain network between the two motor 

tasks in the high beta band. Based on these results, we will 

research brain networks with more quantitative parameters 

and methods, and to compare stroke patients and healthy 

control group for further study. 
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