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Abstract— Analysis of the dynamics (non-stationarity) of
functional connectivity patterns has recently received a lot
of attention in the neuroimaging community. Most analysis
has been using functional magnetic resonance imaging (fMRI),
partly due to the inherent technical complexity of the electro- or
magnetoencephalography (EEG/MEG) signals, but EEG/MEG
holds great promise in analyzing fast changes in connectivity.
Here, we propose a method for dynamic connectivity analysis
of EEG/MEG, combining blind source separation with dynamic
connectivity analysis in a single probabilistic model. Blind
source separation is extremely useful for interpretation of the
connectivity changes, and also enables rejection of artifacts.
Dynamic connectivity analysis is performed by clustering the
coactivation patterns of separated sources by modeling their
variances. Experiments on resting-state EEG show that the
obtained clusters correlate with physiologically meaningful
quantities.

I. INTRODUCTION

Typically, the statistical dependence of neural signals
in different brain regions (i.e., functional connectivity [5])
dynamically changes over time. These changes may reflect
critical aspects of information processing related to cogni-
tive or behavioral functions [6]. Analysis of such dynamic
functional connectivity, especially in the case where the
brain activity spontaneously fluctuates during resting state,
has been gaining increasing attention in both neuroimag-
ing [6], [16], [9] and neuroengineering [12]. A key technical
challenge here is to explore the statistical regularities that
intrinsically exists in spontaneous brain activity, which needs
well-designed exploratory/unsupervised analysis methods.

One of the most fundamental methods used so far for
analyzing dynamic functional connectivity is clustering. For
example, previous studies on resting-state functional mag-
netic resonance imaging (fMRI) have used the well-known k-
means clustering to categorize the signals’ coactivations [10]
or correlations [1] across the whole brain into a few discrete
states, as well as to find unique patterns (cluster centroids)
associated with these states. Both the estimated states and
the patterns obtained provide a simple and intuitive way
of analyzing the data. A similar approach would also be
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very useful for analyzing spontaneous electroencephalogra-
phy (EEG) and magnetoencephalography (MEG), especially
for characterizing the brain states that change relatively fast.
This is also highly relevant for advanced brain-computer
interfacing (BCI) technologies.

Clustering has previously been used directly on the
EEG/MEG sensor space, e.g., in studies on EEG mi-
crostates [4] or on estimating subjects’ vigilance levels
from EEG [15]. However, a more promising application
of “connectivity clustering” to EEG/MEG can be obtained
by first separating the neural sources from the observed
mixtures (sensor measurements) prior to clustering, either
by blind source separation (BSS) methods or by solving
electromagnetic inverse problems. Blind source separation
has the advantage of greatly simplifying the interpretation of
the results by decomposing the data into components, and
the inverse problem can be solved to localize the obtained
components afterwards.

The problem is that solving the two different problems
one-by-one (stage-wise), i.e., doing first source separation
and then clustering, is “neither a principled nor an optimal
solution to the overall problem” [12]. Hence, a unified
approach would be desirable for improving the quality of
clustering/BSS as well as the interpretability of result.

Here, we propose a novel method that combines the
BSS and connectivity clustering of EEG/MEG sources in
a principled manner. Our basic idea is to use a finite mixture
model of the sources that exhibit state-dependent coactivation
patterns, characterized by their amplitude envelopes. The
source model is then integrated with a model of complex-
valued BSS. Due to its simplicity, the model is tractable, and
the entire model can be simultaneously estimated (optimized)
with a unified objective.

II. PROPOSED METHOD

A. Complex-valued BSS based on Hilbert transform

Consider a basic set-up for blind separation of EEG/MEG
sources. Let x(t) = (x1(t), x2(t), . . . , xd(t))

T ∈ Rd be an
EEG/MEG signal with discrete time index t = 1, 2, . . . , N ,
measured in d sensor channels and have been preprocessed
appropriately. Each xj(t) is then assumed to be a linear
instantaneous mixture of d sources, that is,

x(t) = As(t), (1)

where s(t) = (s1(t), s2(t), . . . , sd(t))
T ∈ Rd denotes the

source signal. The mixing matrix A ∈ Rd×d is assumed to
be non-singular, so that the demixing matrix W := A−1

exists. Every sj(t) is further assumed to have zero mean,
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without loss of generality, as we always subtract the sample
mean from the sensor signals. Note that the numbers of
sensors and sources are assumed to be equal for mathematical
simplicity. However, the same setting is directly available
when more sensors than sources exist, e.g., with the sensor
dimensionality reduced by principal component analysis.

Instead of directly solving the BSS problem above, we
convert the problem to a complex-valued BSS, modeled
similarly as

x̃(t) = As̃(t), (2)

where x̃(t) ∈ Cd and s̃(t) ∈ Cd are the complex sensor and
source signals, respectively. Specifically, we use the complex
analytic signals defined in each sensor and source channel as
x̃j(t) := xj(t) + iH[xj ](t) and s̃j(t) := sj(t) + iH[sj ](t),
respectively, where i denotes the imaginary unit, and H[f ]
denotes the Hilbert transform of a signal f(t). Note that the
mixing matrix A in Eq. (2) is identical to the original one in
Eq. (1) because of the linearity of the Hilbert transform; it
thus can be interpreted directly in the original sensor space.

The problem is now to estimate both A and s̃(t) from x̃(t)
that can be computed directly from the original x(t) 1, which
requires suitable assumptions (a model) about the sources.
The fundamental motivation for this Hilbert transformation
is that the analytic source s̃j(t) gives the (instantaneous)
amplitude of sj(t) simply as its modulus [14], i.e., αj(t) :=
|s̃j(t)|, which greatly simplifies the development below.

B. Latent coactivity mixture model (LCMM)

We introduce a novel statistical model for the s̃j(t) in
Eq. (2) to perform clustering of source connectivities and
the complex-valued BSS in a unified manner. A fundamental
assumption here is that the system generating the data
can be in a finite number of different states (indexed by
k = 1, 2, . . . ,K), reflected in different levels of the source
amplitudes.

The proposed latent coactivity mixture model (LCMM)
defines the following generative process of the complex
sensor signal x̃(t) for each t = 1, 2, . . . , N , simply treated
as i.i.d. in time:

1) State k occurs with probability ηk
2) Sources s̃(t) are generated as T̃ (s̃; diag(bk), ν), with

their variances depending on k
3) Sensor signal x̃(t) is given by Eq. (2)

where T̃ (·; Σ, ν) denotes the probability density function
(pdf) of the multivariate Student-t distribution for complex
circular random vectors [14], parameterized by the scatter
matrix Σ and the degrees of freedom ν, given by,

T̃ (s̃; Σ, ν) =
2dΓ(d+ ν

2 )

Γ(ν2 )(νπ)d|Σ|

(
1 +

2

ν
s̃TΣ−1s̃

)−d− ν
2

, (3)

where Γ(·) denotes the Gamma function. The circularity im-
plies that the (instantaneous) phase is distributed uniformly
and independently of the amplitude. Roughly speaking, bk

1For accurate computation of the Hilbert transform, we here focus on
band-limited signals x(t) after preprocessing.

sets expected levels of the instantaneous powers (i.e., squared
amplitude) of the sources in different states, and is here
termed the coactivation patterns as in [10].

The Student-t model of the complex sources, Eq. (3), has
desirable properties for connectivity clustering of EEG/MEG
sources. First, as is well-known, it has a robustness property
for the estimation of (co)variances, which is proportional to
Σ [11], assuming the covariances exist. Second, the coac-
tivated amplitudes have homogeneous correlations, which
serves as a parsimonious model of connectivity within each
state: The conditional correlation coefficient, given the state
k, between any two amplitudes αj and αj′ (j 6= j′) is a
positive constant that depends only on ν (assuming neither
of the variances bjk, bj′k is zero; the proof is omitted due to
the lack of space).

The LCMM now gives the pdf in the complex sensor
space as p(x̃) =

∑K
k=1 ηkT̃ (x̃; ATdiag(bk)A, ν); it can be

conveniently expressed using W = A−1 as

p(x̃) = |det W|
K∑
k=1

ηkT̃ (Wx̃; diag(bk), ν). (4)

The form of Eq. (4) is similar to the standard model
of independent component analysis (ICA) [7], while the
sources are now not independent of each other. Compared to
other hierarchical extensions of ICA with dependent sources
(e.g., [8]), the LCMM is tractable and fast to learn, because it
has only one discrete state but not multiple continuous ones
that may complicate the estimation.

C. Parameter estimation

The parameters of the LCMM are {W,B,η}, where
B := (b1, . . . , bK) collects the coactivation patterns, and the
vector η collects the state probabilities ηk’s. The parameters
can be easily estimated by the maximum likelihood method.
The degrees of freedom ν could also be estimated from
data, while in practice we fix it to as a pre-set constant (we
used ν = 2 below) as it does not greatly affect the solu-
tions. We specifically used a quasi-Newton method2 in our
experiments below to minimize the negative log-likelihood,
i.e., (1/N)

∑N
t=1{− ln p(x(t))} + const., where we used a

reparameterization [13] of ηk = exp(η′k)/
∑K
k′=1 exp(η′k′)

with η′k’s, so that ηk automatically satisfied the constraints,
ηk ≥ 0 and

∑K
k=1 ηk = 1, to be a probability distribution.

After obtaining the estimates of the model parameters, the
(real-valued) sources are separated by s(t) = Wx(t) for any
given x(t). The states are then inferred by first Hilbert trans-
forming a time segment of x(t) into corresponding complex
signal x̃(t) and then computing the posterior probability of
the state, with the prior probabilities ηk set appropriately
(e.g., to uniform probabilities). The maximum a posteriori
(MAP) estimate of the state is then given by taking the state
that maximizes this posterior, which gives the final result of
clustering.

2We used a Matlab implementation of the limited-memory BFGS by Mark
Schmidt (http://www.di.ens.fr/˜mschmidt/Software/minFunc.html)
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III. EXPERIMENTAL RESULTS

Here, we first validate the proposed method in a simulation
experiment and then demonstrate it with a real EEG dataset.

A. Comparison with stagewise approaches

We start by simulated EEG (or MEG) sources that are
rhythmic with their amplitudes jointly changing. The six
(d = 6) sources sj(t) were created as follows. First, we
applied a band-pass filter (9.5-10.5 Hz) to Gaussian white
signals sampled virtually at 75 Hz to simulate alpha waves.
Then, they were amplitude-modulated block-wise in every
2-second window (150 samples) to show state-dependent
coactivation patterns; i.e., the j-th signal was multiplied by√
bjk, with the state k randomly chosen for each block

with uniform probability (k = 1, 2, 3). Each entry of bk
was independently sampled from a standard Gaussian but
was set to zero if negative, and this was repeated until
when at least two entries satisfied bjk ≥ 0.05. The sources
with non-zero bjk’s were then actually coactivated, while
very small activity levels were avoided with this procedure.
Finally, the amplitudes of these coactivated sources were
globally modulated by a common modulatory signal (a noisy
sinusoidal signal), and Gaussian white noise was added
(SNR: 30 dB).

The goal of this simulation was to show that the new uni-
fied approach, i.e., simultaneous optimization of the source
separation and clustering, improves the quality of solution
in both problems. We thus made a comparison between this
simultaneous method and two other methods with stagewise
solutions, namely, stagewise and k-means: The latter two
methods first used the complex-valued FastICA [3] for
separating the complex sources s̃(t); then, stagewise learned
the mixture of Student-t model of LCMM directly on the
separated sources, while k-means performed the standard k-
means clustering on the log-amplitudes log |s̃j(t)| (where the
mean log-amplitude over channels was subtracted at every t
to compensate for the global modulation).

Figure 1 compares the performance of these three methods
in clustering (left) and in source separation (right), when the
number of clusters was assumed to be known (K = 3). Here,
the six sources sj(t) were linearly mixed into the sensor
signal x(t) with a mixing matrix A generated randomly
in each run, and we conducted 50 runs with each specific
sample size N shown in the figure. Note that in the right
panel, “LCMM” corresponds to simultaneous and “ICA” to
both stagewise and k-means. As is clearly seen, the proposed
simultaneous approach improved the relevant performance
measures, especially when the sample size was relatively
small. The relative performance was similar even when the
number of K was misspecified, which is shown in Fig. 2.

B. Application to resting-state EEG analysis

We next demonstrate the proposed method of connectivity
clustering with real resting-state EEG data. The clustering is
validated using further task-based data and task labels.

Our EEG experiment consisted of two resting-state (RS)
sessions, including six task sessions between the RS sessions.
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Fig. 1. Simulated data (with true K = 3): Performance in clustering
(left) and source separation (right) with different sample sizes, measured
respectively by the Adjusted Mutual Information [17] (scaled between 0
[completely random] and 1 [perfect]) and the Amari Index [2] (which equals
zero if the true A is recovered up to the permutation and scaling of the
columns). Each box and whisker shows the interquartile range (with the
median) and the entire data range, respectively, of the 50 runs, excluding
some outliers indicated by +. See text for the details of the legends.
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(b) K = 6
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Fig. 2. Simulated data (with misspecified K’s): Clustering performance
shown in the same format in Fig. 1 (left). See also the caption of Fig. 1.
The true number of clusters was always three.

In each RS session (5 minutes), a single healthy subject was
instructed to relax without thinking of anything particular
and without sleeping, while focusing on a fixation point at
the center of a screen. In each task session, the subject was
instructed to perform a cued motor imagery/non-imagery.
The task sessions contained repeated trials of three different
actions; namely, the subject was asked in a random order to
either 1) Left: covertly imagine a left-hand movement, 2)
Right: covertly imagine a right-hand movement, or 3) Idle:
not imagine hand movements; each of these for 3 seconds
after a visually-cued onset.

The EEG data (Active-Two amplifier, 64CH active elec-
trodes, BioSemi, the Netherlands) was acquired at a sampling
frequency of 256Hz, band-pass filtered off-line to 1-50Hz
(4th-order butterworth, zero phase), and re-referenced to the
common average. A part of the RS data and some trials in the
task data were rejected due to gross contamination. Typical
ocular, cardiac and muscle artifacts were also identified and
removed by FastICA with visual inspection and frequency
analysis. The RS data eventually contained a total of N =
97, 536 samples x(t). The task data contained 65, 61 and 66
trials for Left, Right and Idle.

In the analysis, all the parameters of the LCMM were
learned from the RS data alone. The task data were used
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Fig. 3. Real EEG analysis: Averaged time-courses of the posterior state
(cluster) probabilities during the task trials of cued motor imagery or non-
imagery, with the LCMM trained on other resting-state EEG data. Only the
seven most frequent clusters (out of ten) are shown due to the limitation
of space. The three plots in different colors show the posterior values of
each cluster, averaged over all trials of the three different actions: Left
(motor imagery on left hand; blue), Right (on right hand; red), and Idle
(no imagery; green). The solid lines indicate their moving-average with
time windows of 0.5 [sec], and the shaded intervals indicate the standard
deviation in each moving window. The horizontal time axis is relative to
the cued onset, where the two vertical lines indicate the time period over
which the subject was instructed to keep the imagery or non-imagery.

only to post-hoc investigate the physiological validity of the
learned model. The frequency band of interest was set to 13-
30Hz (Beta band; filtered with 4th-order butterworth, zero-
phase). The number of clusters was set to 10, which was
selected for ease of visualization, while similar clusters were
often found at least for 20, 30, . . . , 60 (not shown here).

Figure 3 shows the averaged time-courses of the posterior
state probability, based on the task data and a uniform prior
ηk. Among the seven clusters displayed here, the cluster #1,
and possibly #2, seem to be activated frequently in Idle,
while activated less frequently (or deactivated frequently) in
Left or Right with a latency of about 1.5 seconds after the
task onset. In contrast, the clusters #4, #5, and #6 seem
to become activated frequently with a similar latency in
Left or Right, but not in Idle. No clusters seemed to be
specifically correlated with either Left or Right. Examples of
scalp topographies of coactivated sources, associated with the
clusters #1 and #5, are shown in Fig. 4. The result could be
interpreted as suppression of spatially-distributed network of
the sources (#1), while activation of more spatially-focused
one (#5), during motor imagery. Note that the patterns were
found in spontaneous EEG data. Thus, even the spontaneous
EEG sources intrinsically contain task-relevant coactivation
patterns, which may be modeled and learned by unsupervised
methods such as LCMM.

IV. CONCLUSION

We proposed a method combining blind source separation
and clustering to analyze the dynamics of functional connec-
tivity in EEG/MEG. The method is based on estimation of a
single probabilistic model, thus avoiding the unoptimal sepa-
ration of the two stages of analysis. Unlike related two-stage
models, the model is tractable and inference computationally
simple. Results on resting-state EEG indicate that the clusters
learned are related to meaningful brain states.

Fig. 4. Real EEG analysis: Scalp topographies of coactivated EEG sources
found by LCMM. The top and bottom rows correspond to the clusters #1
and #5 in Fig. 3, activated more frequently in Idle and in Left/Right,
respectively. The panels in each row show the scalp topographies (each
given by a column of A) of the sources that activate relatively strongly in
the cluster, i.e., have relatively large bjk (expected powers). The relative
strength is indicated by the width of the black bar at the bottom of each
panel. The gray bars indicate their cumulative score such that the full panel
width indicates the total sum, normalized to 1. Only the topographies that
keep more than the score of 0.7 are displayed here.
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