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Abstract— Today, there is a significant demand for fast,
accurate, and automated methods for the discrimination of
latent patterns in neuroelectric waveforms. One of the main
challenges is the development of efficient feature extraction
tools to utilize the rich spatio-temporal information inherent
in large scale human electrocortical activity. In this paper, our
aim is to isolate the most suitable feature extraction method for
accurate classification of EEG data related to distinct modes of
sensorimotor integration. Our results demonstrate that with
some user-dependent input for feature space constraint, a
simple classification framework can be developed to accurately
distinguish between brain electrical activity patterns during two
distinct conditions.

I. INTRODUCTION

Recording electroencephalography (EEG) provides a di-
rect index of neuronal activity averaged across large popula-
tions of synchronously active pyramidal cells in the human
cortex [1]. Scalp-recorded patterns of neuroelectrical poten-
tials exhibit dynamic fluctuations in regional and network
functional activity when individuals engage in distinct cogni-
tive and perceptual tasks. Given the multi-dimensional nature
of EEG recordings and the remarkable variety of quantita-
tive features that can be extracted even from spontaneous
(resting) EEG recordings, an important question is related
to the relative information yield of these various measures.
Specifically, to what extent can we use the rich spatio-
temporal patterns of EEG waveforms to discriminate distinct
modes of large-scale cortical activity between different ex-
perimental conditions. In the present experiment, we sought
to employ a data-driven approach for the latent classification
of two distinct information processing modes (one related to
simple viewing of an object, the other to the performance
of a demanding visuo-motor tracking task). To this end, we
recorded dense-array event-related EEG activity while the
observers engaged in a visuo-motor integration task versus
a passive viewing control condition. We recorded steady-
state visual evoked potentials (ssVEPs) which are large-scale
oscillatory field potentials elicited by a rhythmic train of
sensory stimulation. The human visual cortex exhibits so-
called resonance phenomena [2], which consists of entrained

†This work is supported by the Grant (I920247) at Binghamton Univer-
sity.

1S. Khanmohammadi and C.-A. Chou∗ are with Department of Systems
Science and Industrial Engineering, SUNY Binghamton, Binghamton, NY-
13902, USA (Asterisk indicates the corresponding author. Tel:607-777-
5930, Email: cachou@binghamton.edu)

2V. Miskovic is with Department of Psychology, SUNY Binghamton,
Binghamton, NY-13902, USA

3F. Zamani Esfahlani is with Department of Bioengineering, SUNY
Binghamton, Binghamton, NY-13902, USA

spectral response signatures to stimuli that have a constant
rate of luminance or contrast modulation. In this paper,
we exploit the high signal-to-noise ratio and narrow-band
manifestations of ssVEPs to focus on the extraction of
relevant event-related EEG dynamics.

II. METHODOLOGY

The overall framework (shown in Fig. 1) consists of steps
including data acquisition, data preprocessing, feature ex-
traction, and classification. Each of these steps are described
greater detail below.

Fig. 1: Overview of implementation framework.

A. Data Acquisition

The experiment included two male observers who pro-
vided consent prior to taking part in the study. The observers
had corrected to normal vision and no family history of
photic epilepsy. Given the small number of observers, the
primary objective of this paper was to establish a bench-
mark validation with real electrophysiological data before
proceeding to a larger dataset. Observers were seated in a
comfortable chair in a dimly lit room and a dense-array
electroencephalogram (EEG) sensor net was applied. Ob-
servers were given instructions to fixate on the center of the
display and avoid eye movements and blinks. Stimuli were
displayed on a 23inch LED monitor (Samsung S23A750D)
with a 120Hz refresh rate, positioned at a distance of 1m.
The experimental task consisted of two separate conditions.
In the control condition, observers viewed one shape (circle
or square, counterbalanced across the two observers) that was
shown for 5 duty cycles of the LED display and removed for
5 subsequent duty cycles, leading to an on-off (square-wave)
flicker rate of 12Hz. Importantly, the color of the shape also
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changed (from gray to green) every 1000ms. In the visuo-
motor condition, observers viewed a distinct shape (circle
or square, depending on experimental assignment) but were
instructed to produce 3 finger taps using the right hand during
each color cycle (i.e., a 3Hz finger tap rate during the green
phase, a new 3Hz finger tap rate during the white phase
and so on). The visuo-motor condition thus required active
integration of the visual (rapidly occurring color changes)
and motor (finger tap) task components. Stimuli were pre-
sented for 9 continuous seconds of viewing time, interspersed
with blank inter-trial intervals varying randomly between 7
and 9 seconds. There were 20 experimental trials in each
of the two conditions. The EEG was continuously recorded
from 129 sensors using an Electrical Geodesics HydroCel
Geodesic Sensor Net digitized online at a rate of 250Hz,
using the vertex sensor (Cz) as the recording reference, with
the online band-pass filter set at 50Hz (low-pass). Sensor
impedances were kept below 50kΩ.

B. Data Preprocessing

Offline EEG analyses were implemented using the Electro-
MagnetoEncephalography (EMEGS) toolbox for MATLAB
[3]. Relative to stimulus onset, epochs were extracted from
the raw EEG signals that included 500ms pre- and 9000ms
post-onset for all conditions. As described by [4], statistical
parameters were used to calculate distributions across trials
and channels, and interpolate artifact-contaminated channels.
The original recording reference (Cz) was first used to
detect recording artifacts, and then the data was average
referenced to detect global artifacts. Rejection criteria in-
cluded the maximum of the amplitude, standard deviation,
and first temporal derivate in a given trial-channel pair.
Subsequently, the artifact-clean scalp EEG data were sub-
mitted to a Laplacian transform to calculate current source
density (CSD) estimates. An important advantage of the CSD
transform is that it provides a reference-independent estimate
of electrocortical activity. Here, we implemented the CSD
approach described by [5], which is based on spherical spline
interpolation and well suited for dense-array EEG montages.
To eliminate non-stationary (onset event-related potential)
data, we eliminated the first 1000ms post-stimulus onset.
Therefore, the analyses presented here focus on steady-state
EEG activity during the period from 1000ms to 9000ms. At
the end of the data preprocessing, for an observer, we obtain
a three dimensional matrix A = (ai jk), where i = 1, ...,M,
j = 1, ...,N, and k = 1, ...,P. Here M is the total number of
time points (i.e. 2001), N is the total number of channels
(i.e. 129), and P is the total number of trials. Each cell of
matrix A represents the EEG signal values (amplitude).

C. Feature Extraction

Two feature extraction methods were applied to extract the
representative values of channels: 1) Fast Fourier Transform
(FFT) at 12Hz and 2) Discrete Wavelet Transform (DWT)
at 7.81−15.62Hz. Each of these feature extraction methods
are described as follows:

1) Absolute value of Fast Fourier Transform at 12Hz
(AFFT-12). In this feature extraction method, the Dis-
crete Fourier Transform (DFT) of EEG signals in each
channel j of each trial k is calculated using the Cooley-
Tukey FFT algorithm [6]. Then, the absolute value
of the DFT corresponding to the frequency of 12Hz
was calculated to represent signals in that specific
frequency bin. The DFT is expressed as:

X(q) =
M

∑
i=1

x(i)ω(i−1)(q−1)
M , (1)

where ωM = e
(−2πi)

M and x(i) is a complex number.

2) Standard deviation of the detail coefficients of Discrete
Wavelet Transform in α frequency band (α-DWT). In
this feature extraction method EEG signals in each
channel j of each trial k was decomposed into eight
details (D1−D8), and one approximation (A8), us-
ing Daubechies 4 wavelet filter. Then, the standard
deviation of the detail coefficients in D4 (where D4
corresponds to the α frequency band (7.81−15.62Hz)
was calculated to represent signals in that specific
frequency range. The DWT is expressed as [?]:

DWT (a,b) =
1√
|2a|

∫
∞

−∞

x(t)ψ(
t−2ab

2a )dt, (2)

where a and b are scaling and shifting parameters.
The output of feature extraction is presented as a P×

(N + 1) matrix A f , where P represents the total number
of trials in both experiments, and N represents the total
number of channels. The N + 1 column represents the type
of experiments, where class 0 corresponds to the experiment
for visual cortex activity and class 1 corresponds to the
experiment for visual-motor cortex activity. Each cell in the
A f matrix denotes a feature value extracted from one of
the above-mentioned methods, and it represents a column
of matrix A (one channel). In short, the feature extraction is
a mapping step from matrix A to matrix A f .

To avoid bias caused by scale difference, the values
in every column (for a channel) of the A f matrix were
normalized between 0 and 1.

D. Classification

After extracting the necessary features, supervised clas-
sification algorithms were applied to classify the trials into
two experimental conditions, where one indicated the con-
trol (view only) and the other indicated the visuo-motor
condition. The classification algorithms used in this study
are linear classification algorithms that are arguably simpler,
faster, and easier to interpret than non linear supervised clas-
sification methods. The three linear supervised classification
algorithms used in this study are briefly described in this
section. Readers are referred to [7], [8] for more details of
supervised machine learning techniques.

1) Support Vector Machine (SVM) is arguably the most
widely used algorithm to analyze brain activity data
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because of its robustness and good generalization
properties [9]. It performs well on the data with high
feature-to-instance ratio (i.e. 129 to 27 in our data set).
SVM is based on the concept of margin [7], where
margin is defined as two sides of a hyperplane that
can separate the data. The main goal of SVM is to
identify a hyperplane with the largest margin, where
the data can be linearly separated using this identified
hyperplane. In short, SVM is a linear discriminative
classifier that uses a hyperplane to separate data into
two groups in a way that the margin between two
classes are maximized [10].

2) Logistic Regression (LR) is another linear discrimina-
tive classifier, whose underlying intuition is to separate
the data instances into two groups using a hyperplane
[10]. LR is based on a concept called logit [7], where
logit is a linear transformation for the probability value.
The term logistic in logistic regression indicates the
fact that logit function is solved using a linear function.
Apart from working substantially well in the datasets
with high feature-to-instance ratio, one of the main
advantages of the logistic regression is the fact that
it provides a probability value associated with the
predicted class of a new data point.

3) Linear Discriminant Analysis (LDA) is a classification
method based on transferring the feature space into
a new lower dimension subspace [7]. The goal is to
maximize the ratio of class variance to within class
variance in the dataset, which guarantees maximal
separability. Discriminant analysis assumes that the
data corresponding to different classes follow different
Gaussian distributions. LDA is one of the most popular
classification algorithms in EEG data analysis, mainly
because of its simplicity and computational speed that
makes it suitable for brain computer interface (BCI)
applications [11].

To evaluate the classification performance, a leave-one-out
cross validation framework is employed where in an iteration,
one trial is used as testing data while the remaining trials are
used as training data. The accuracy is calculated by taking
the correctly classified trials divided by the total number of
trials.

III. RESULTS

The three linear classification algorithms (SVM, LR, and
LDA) were applied to the outputs of the two different feature
extraction methods, using different channel selection strate-
gies. The channel selections included: selection of all 129
channels, selection of channels based on expert knowledge
(user-guided selection of channels corresponding to regions
that were proximal to the visual and motor cortices), three
groups of randomly selected channels each containing fifteen
channels that were not included in the user-guided selection,
and top fifteen channels based on the Pearson correlation
between each channel and class label. The selected channels
for the experiment are presented in Table I. The details of the
experimental results are provided in Tables 2-4 for observer

TABLE I: Indexes of Selected Channels Included in Classi-
fication Models.

Selected channels Index of channels included in classification
All channels [1 to 129]
Expert Selection (Visual/Left Motor) [70,71,74,76,83,82,81,75,36,37,42,30,29,35,41]
Expert Selection (Visual) [70,71,74,76,83,82,81,75]
Expert Selection (Left Motor) [36,37,42,30,29,35,41]
Expert Selection (Right Motor) [87,93,103,104,105,110,111]
Expert Selection (Frontal) [18,16,10,4,5,12,19,11]
Expert Selection (Left Motor/Right Motor) [36,37,42,30,29,35,41,93,87,105,111,110,103,104]
Random selection1 [21,8,9,26,33,119,59,80,54,97,46,56,84,15,121]
Random selection2 [32,44,27,22,114,108,79,94,58,64,125,107,61,78,109]
Random selection3 [128,1,3,23,39,40,7,31,55,90,101,96,63,50,120]

01, observer 02, and a combination of both observers. Each
table provides the result in terms of classification accuracy
(%) and ranking (smaller rank index means higher accu-
racy). Additionally, average rank is provided based on the
individual rankings in each table. The average rank indicates
how well one specific classification algorithm performed for
one channel selection group, using two feature extraction
methods. The best ranking for each classification algorithm
is highlighted using underline.

TABLE II: Classification Results for Observer 01.
SVM AFFT-12 Acc (Rank) α-DWT Acc (Rank) Avg Rank

All Channels 48.15% (9) 88.89% (2) 5.5
Expert Selection (Visual/Left Motor) 66.67% (5) 74.07% (6) 5.5
Expert Selection (Visual) 59.26% (6) 48.15% (9) 7.5
Expert Selection (Left Motor) 81.48% (1) 74.07% (6) 3.5
Expert Selection (Right Motor) 70.37% (2) 85.19% (4) 3.0
Expert Selection (Frontal) 51.85% (8) 62.96% (8) 8.0
Expert Selection (Left Motor/Right Motor) 70.37% (2) 100.00% (1) 1.5
Average Random Selection 59.26% (6) 85.19% (4) 5.0
Top Ranked Channels (Based on Correlation) 70.37% (2) 88.89% (2) 2.0

LR AFFT-12 Acc (Rank) α-DWT Acc (Rank) Avg Rank
All Channels 55.56% (8) 70.37% (6) 7.0
Expert Selection (Visual/Left Motor) 66.67% (3) 59.26% (8) 5.5
Expert Selection (Visual) 70.37% (1) 44.44% (9) 5.0
Expert Selection (Left Motor) 70.37% (1) 70.37% (6) 3.5
Expert Selection (Right Motor) 62.96% (4) 92.59% (1) 2.5
Expert Selection (Frontal) 40.74% (9) 81.48% (4) 6.5
Expert Selection (Left Motor/Right Motor) 62.96% (4) 92.59% (1) 2.5
Average Random Selection 56.79% (7) 75.31% (5) 6.0
Top Ranked Channels (Based on Correlation) 59.26% (6) 85.19% (3) 4.5

LDA AFFT-12 Acc (Rank) α-DWT Acc (Rank) Avg Rank
All Channels 40.74% (8) 85.19% (3) 5.5
Expert Selection (Visual/Left Motor) 66.67% (3) 59.26% (8) 5.5
Expert Selection (Visual) 70.37% (1) 44.44% (9) 5.0
Expert Selection (Left Motor) 70.37% (1) 70.37% (7) 4.0
Expert Selection (Right Motor) 62.96% (4) 92.59% (1) 2.5
Expert Selection (Frontal) 40.74% (8) 81.48% (5) 6.5
Expert Selection (Left Motor/Right Motor) 62.96% (4) 92.59% (1) 2.5
Average Random Selection 56.79% (7) 75.31% (6) 6.5
Top Ranked Channels (Based on Correlation) 59.26% (6) 85.19% (3) 4.5

From Tables 2-4, it shows that the expert selected channel
clusters (where the cluster corresponds to expected active re-
gions of the brain) provided a very good accuracy compared
to other groups of selected channels. More specifically, in six
out of nine tests, the expert selection of channels resulted
in best ranking when compared to other channel selection
methods.

Top channels for each feature extraction method based on
the (Pearson) correlation between channels and class, and
the regions corresponding to expert selection of channels is
shown in Fig 2. It can be observed that the most informative
channels in terms of classification performance are located
close to motor cortex, which was expected considering the
nature of the synchronized visuo-motor integration task.

IV. CONCLUSION
The current study used a simple classification frame-

work to distinguish between two types of EEG patterns
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TABLE III: Classification Results for Observer 02.
SVM AFFT-12 Acc (Rank) α-DWT Acc (Rank) Avg Rank

All Channels 61.54% (2) 80.77% (4) 3.0
Expert Selection (Visual/Left Motor) 53.85% (7) 80.77% (4) 5.5
Expert Selection (Visual) 42.31% (8) 53.85% (8) 8.0
Expert Selection (Left Motor) 61.54% (2) 84.62% (1) 1.5
Expert Selection (Right Motor) 30.77% (9) 76.92% (6) 7.5
Expert Selection (Frontal) 61.54% (2) 53.85% (8) 5.0
Expert Selection (Left Motor/Right Motor) 57.69% (6) 84.62% (1) 3.5
Average Random 58.97% (5) 74.36% (7) 6.0
Top Ranked Channels (Based on Correlation) 76.92% (1) 84.62% (1) 1.0

LR AFFT-12 Acc (Rank) α-DWT Acc (Rank) Avg Rank
All Channels 50.00% (8) 65.38% (6) 7.0
Expert Selection (Visual/Left Motor) 53.85% (7) 65.38% (6) 6.5
Expert Selection (Visual) 50.00% (8) 61.54% (9) 8.5
Expert Selection (Left Motor) 57.69% (4) 73.08% (3) 3.5
Expert Selection (Right Motor) 69.23% (2) 76.92% (2) 2.0
Expert Selection (Frontal) 57.69% (4) 65.38% (6) 5.0
Expert Selection (Left Motor/Right Motor) 65.38% (3) 80.77% (1) 2.0
Average Random 55.13% (6) 69.23% (5) 5.5
Top Ranked Channels (Based on Correlation) 73.08% (1) 73.08% (3) 2.0

LDA AFFT-12 Acc (Rank) α-DWT Acc (Rank) Avg Rank
All Channels 46.15% (9) 100.00% (1) 5.0
Expert Selection (Visual/Left Motor) 53.85% (7) 65.38% (7) 7.0
Expert Selection (Visual) 50.00% (8) 61.54% (9) 8.5
Expert Selection (Left Motor) 57.69% (4) 73.08% (4) 4.0
Expert Selection (Right Motor) 69.23% (2) 76.92% (3) 2.5
Expert Selection (Frontal) 57.69% (4) 65.38% (7) 5.5
Expert Selection (Left Motor/Right Motor) 65.38% (3) 80.77% (2) 2.5
Average Random 55.13% (6) 69.23% (6) 6.0
Top Ranked Channels (Based on Correlation) 73.08% (1) 73.08% (4) 2.5

TABLE IV: Classification Results for the combination of
Observers 01 and 02.

SVM AFFT-12 Acc (Rank) αDCDW Acc (Rank) Avg Rank
All Channels 62.26% (2) 73.58% (1) 1.5
Expert Selection (Visual/Left Motor) 64.15% (1) 67.92% (3) 2.0
Expert Selection (Visual) 52.83% (8) 64.15% (5) 6.5
Expert Selection (Left Motor) 56.60% (7) 67.92% (3) 5.0
Expert Selection (Right Motor) 60.38% (4) 64.15% (5) 4.5
Expert Selection (Frontal) 62.26% (2) 64.15% (5) 3.5
Expert Selection (Left Motor/Right Motor) 50.94% (9) 60.38% (9) 9.0
Average Random Selection 58.49% (5) 68.55% (2) 3.5
Top Ranked Channels (Based on Correlation) 58.49% (5) 64.15% (5) 5.0

LR AFFT12 Acc (Rank) αDCDW Acc (Rank) Avg Rank
All Channels 54.72% (6) 66.04% (2) 4.0
Expert Selection (Visual/Left Motor) 52.83% (8) 62.26% (6) 7.0
Expert Selection (Visual) 54.72% (6) 58.49% (8) 7.0
Expert Selection (Left Motor) 58.49% (3) 66.04% (2) 2.5
Expert Selection (Right Motor) 62.26% (1) 60.38% (7) 4.0
Expert Selection (Frontal) 58.49% (3) 54.72% (9) 6.0
Expert Selection (Left Motor/Right Motor) 56.60% (5) 66.04% (2) 3.5
Average Random Selection 59.12% (2) 66.67% (1) 1.5
Top Ranked Channels (Based on Correlation) 49.06% (9) 64.15% (5) 7.0

LDA AFFT-12 Acc (Rank) αDCDW Acc (Rank) Avg Rank
All Channels 52.83% (7) 66.04% (2) 4.5
Expert Selection (Visual/Left Motor) 52.83% (7) 62.26% (6) 6.5
Expert Selection (Visual) 56.60% (5) 58.49% (8) 6.5
Expert Selection (Left Motor) 58.49% (3) 66.04% (2) 2.5
Expert Selection (Right Motor) 62.26% (1) 60.38% (7) 4.0
Expert Selection (Frontal) 58.49% (3) 54.72% (9) 6.0
Expert Selection (Left Motor/Right Motor) 56.60% (5) 66.04% (2) 3.5
Average Random Selection 59.12% (2) 66.67% (1) 1.5
Top Ranked Channels (Based on Correlation) 49.06% (9) 64.15% (5) 7.0

corresponding to a simple viewing versus a complex visuo-
motor integration condition. The results are encouraging
and suggest that with the help of user-dependent channel
selection, we can accurately discriminate between these
two neuroelectric waveform patterns. The results were not
consistent for combination of subject one and two (Table 4),
which suggest additional steps should be taken to generalize
EEG classification results across multiple subjects. Our next
step will be to address this issue and expand this framework
to study functional connectivity among cortical regions.
Of interest, the channels with the greatest discrimination
accuracy between the two conditions were those located
over anterior scalp regions overlying the motor and premotor
cortex.
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