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Abstract— The neurovascular coupling is a key mechanism
linking the neural activity to the hemodynamic behavior.
Modeling of this coupling is very important to understand the
brain function but it is at the same time very complex due
to the complexity of the involved phenomena. Many studies
have reported a time delay between the neural activity and
the cerebral blood flow, which has been described by adding a
delay parameter in some of the existing models. An alternative
approach is proposed in this paper, where a fractional system
is used to model the neurovascular coupling. Thanks to its non-
local property, a fractional derivative is suitable for modeling
the phenomena with delay. The proposed model is coupled with
the first version of the well-known balloon model, which relates
the cerebral blood flow to the Blood Oxygen Level Dependent
(BOLD) signal measured using functional Magnetic Resonance
Imaging (fMRI). Through some numerical simulations, the
properties of the fractional model are explained and some
preliminary comparisons to a real BOLD data set are provided.

I. INTRODUCTION

Over the past two decades, advances in neuroimaging have
contributed to significant progress in neuroscience and have
improved diagnosis and treatment of several neurological
diseases. For example, functional magnetic resonance imag-
ing (fMRI) has evolved as a technique for mapping brain
activation and has attracted widespread interest in basic and
clinical research and patient care. The fMRI technique works
by detecting associated changes in blood flow and deoxyhe-
moglobin concentration in response to neural activity. It is a
highly successful tool which does not involve radiation and is
reproducible with good spatial resolution. Despite the efforts
that have been devoted to understand the chain from neural
activity to the measured fMRI signal, namely the Blood
Oxygen Level Dependent (BOLD) signal, the physiological
relationship is yet unclear and not fully explained.

Several linear and nonlinear models have been proposed
to relate neural activity, BOLD signal, hemodynamic vari-
ables (Cerebral Blood Flow ”CBF”, Cerebral Blood Volume
”CBV”), the concentration of deoxyhemoglobin, oxygen
metabolism and glucose metabolism [1], [2], [3], [4]. The
balloon model proposed by Buxton et al., and its variants
introduced by Friston et al. [2] belong to the nonlinear
physiological models category. The initial version of the
balloon model [1] gives the relation between the dynamics of
CBV, deoxyhemoglobin content and BOLD signal, with the
CBF considered as an input. In [2], Friston et al. related the
CBF to the neural activity using a second order differential
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equation. The balloon model and its variants have been
proposed to interpret the BOLD signal. However, recent
studies have outlined the limitations of these models in the
interpretation of the BOLD [6], suggesting the involvement
of additional factors in the model. In this paper, we will
focus on improving the neurovascular coupling model by
introducing the fractional derivatives, suitable to handle
delays.

A fractional derivative (FD) is a generalization of the
traditional derivative to non-integer order. The interest in FD
has grown considerably and it is now used in many fields
of engineering and science [7], [8]. Due to its non-locality
and memory properties, FD is a powerful tool for mod-
eling physical phenomena involving memory effect. Many
researchers have been interested in modeling and analyzing
biomedical and biological systems using fractional calculus.
For instance, Magin [9] showed that fractional calculus can
be an interesting tool to model complex dynamics in bioengi-
neering because it can provide a much better understanding
of the dynamic processes that occur in biological tissues.
In [10], it has been shown that fractional differentiation
provides single neurons with a fundamental and general
computation which can contribute to efficient information
processing and stimulus anticipation. In addition, a fractional
model was proposed to describe anomalous nuclear magnetic
resonance (NMR) relaxation phenomenon [11].

This paper is organized as follows. Section II recalls some
definitions of FD. Section III describes the main features
of the BOLD signal. In section IV, a fractional model is
provided for the neurovascular coupling. In section V, the
performance of the FD balloon model is compared to the
standard balloon model and also to a real event related data
set. Section VI concludes the paper and outlines the future
work.

II. PRELIMINARY

In this study, Grunwald-Letnikov (GL) definition [12] is
used in the calculation of FD. The fractional derivative of a
function f is given by

Dq
t f(t) = lim

h→0

1

hq

∞∑
i=0

c
(q)
i f(t− ih), (1)

where h is the time step, q is the fractional order and c(q)i (i =
0, 1, ...) are the binomial coefficients that can be computed
using the following expression,

c
(q)
0 = 1, c

(q)
i =

(
1− 1 + q

i

)
c
(q)
i−1. (2)
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If we consider n = t−a
h , where a is a real constant, which

expresses a limit value, we can write:

aD
q
t f(t) = lim

h→0

1

hq

[n]∑
i=0

c
(q)
i f(t− ih), (3)

where [.] refers to the integer part, a and t are the bounds
of operation for aD

q
t f(t).

The discrete approximation formula of the qth derivative
at the points kh (k = 1, 2, ...) has the following form:

(k−Lm/h)D
q
tk
f(t) ≈ h−q

k∑
i=0

c
(q)
i f(tk−i), (4)

where Lm is the ”memory length”.

Therefore, the general numerical solution of the fractional
differential equation:

aD
q
t y(t) = g(y(t), t),

is given by,

y(tk) = g(y(tk), tk)h
q −

k∑
i=1

c
(q)
i y(tk−i). (5)

III. FRACTIONAL DERIVATIVES AND BOLD SIGNAL

The BOLD fMRI signal is the magnetic resonance imaging
contrast of blood deoxyhemoglobin. It is considered as an
indirect measure of the neural activity. Since its discovery
in 1990 by Seiji Ogawa and his colleagues [17], it has
attracted many researchers seeking the interpretation and
analysis of this signal in order to extract information on
the neural activity and the related hemodynamic response.
Different studies have confirmed that the BOLD signal can
be characterized by specific features as illustrated in Fig. 1
(extracted from [14]). A delay between the stimulus and CBF
has been also reported in [5] and modeled by adding a delay
parameter in the balloon model.

In this paper, we discuss the use of a fractional model to
capture the different details of the BOLD signal. Fractional
derivatives provide an interesting tool for modeling memory
and hereditary properties of different phenomena. Hence,
FDs are suitable for the characterization of delays. The
idea is to use FD for the neurovascular coupling willing to
improve the description of the BOLD signal. We hope that
the introduction of FD will help to capture the main features
of the signal such as the initial dip.

IV. PROPOSED FRACTIONAL DYNAMICAL MODEL

In this section, the damped oscillator that models the
neurovascular coupling in Friston’s variant of the balloon
model [2] has been replaced by a fractional one. The overall
fractional model is given by,

Dq1
t f(t) = s,

Dq2
t s(t) = εu(t)− s/τs − (f − 1)/τf ,

dv(t)
dt = 1

τ (f − v
1
α ),

dq(t)
dt = 1

τ

(
f 1−(1−E0)

1
f

E0
− v1/α qv

)
,

y(t) = V0
(
k1(1− q) + k2(1− q

v ) + k3(1− v)
)
,

(6)

Fig. 1: Features of BOLD response as function of time. Atype
and Dtype represent the amplitude and the duration of type
which can be either the initial dip, principle peak or the post-
stimulus undershoot [14].

where the state variables f, s, v and q are respectively CBF,
flow inducing signal, CBV and deoxyhemoglobin content.
The parameters of the model are the neural efficacy ε, the
flow decay τs, the auto-regulation τf , the transit time τ , the
stiffness α and oxygen extraction by the capillary bed at rest
E0. q1 and q2, such that 0 < q1 ≤ 1 and 0 < q2 ≤ 1
are fractional differentiation orders that will be discussed in
the next section. V0 is the blood volume fraction at rest. The
parameters k1, k2 and k3 depend on the scanner and are fixed
for a 1.5T scanner and TE = 40ms [1] to,

k1 = 7E0, k2 = 2, k3 = 2E0 − 0.2. (7)

V. NUMERICAL RESULTS

A. Synthetic data

GL approximation (Eq. 5) has been used to solve the
fractional differential equations in Matlab. The parameters
used are from references [2] and [5] (ε = 0.2, τs = 0.8, τf =
0.4, τ = 1, α = 0.4, E0 = 0.4, V0 = 0.04). The neural
activity u(t) is taken as a step function activated at t = 0.2s
and maintained until t = 3s. We propose to study the
effect of fractional derivatives on the BOLD signal when the
physiological parameters of the balloon are taken to be the
same for both integer and fractional models. Three different
cases are studied:
• Case I: q1 = 1 and 0 < q2 < 1.
• Case II: 0 < q1 < 1 and q2 = 1.
• Case III: 0 < q1 < 1 and 0 < q2 < 1.

The BOLD signal obtained in the three cases is compared
to the one obtained with the standard balloon model (with
integer-order).

Fig. 2 shows the BOLD signal in case I. The value of the
peak and the post-stimulus undershoot of the BOLD signal
are affected by variations in the fractional order q2. Indeed,
decreasing q2 reduces the amplitude of the BOLD peak. It
also results in a less marked and longer lasting undershoot.
In Fig. 3, results of case II are illustrated. A smaller q1
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Fig. 2: BOLD response (case I versus standard integer order
system).
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Fig. 3: BOLD response (case II versus standard integer order
system).

allows an initial dip and increases the delay in the BOLD
signal. In case III, combining the effect of both q1 and q2
results in a delayed BOLD response with a small initial dip
and a reduced value of both the peak and the post-stimulus
undershoot as illustrated in Fig. 4.

B. Experimental data

An event-related data set has been extracted from the SPM
website (http://www.fil.ion.ucl.ac.uk/spm/data/face rep/) cor-
responding to a study of the repetition priming for famous
and non-famous faces [15]. The subject was presented with
famous and non-famous faces against a checkerboard base-
line. The faces were presented twice to study the effect of
repetition, which gives a total of 4 events labeled: F1 (famous
1st presentation); F2 (famous 2nd presentation); N1 (non-
famous 1st presentation); N2 (non famous 2nd presentation).
The data set is pre-processed with the SPM8 toolbox to
correct head motion and slice timing. Then, several pro-
cessing steps were carried out to identify the regions with
positive response to face presentation as per the analysis
manual [16]. The event-related averaged response (peri-
stimulus histogram, PSTH) for the N1 event was extracted
at [39,-70,-14]. SPM toolbox also fits a linear combination
of the canonical hemodynamic response function and its
temporal first two derivatives to the real data, which is the
dashed red line depicted in Fig. 5. In this study, we propose
to fit the fractional model (Eq. 6) to this set of real data.
The fractional model given in Eq. 6 has been solved using

GL approximation and has been compared to the experimen-
tal data set extracted from SPM website. In order to have
comparable BOLD signals, the physiological parameters and
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Fig. 4: BOLD response (case III versus standard integer order
system).
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Fig. 5: Real event-related BOLD response. Fitted response
(dashed) and peristimulus histograms (PSTH) for N1 event.

the input u(t) of the balloon have been fixed to be the same
for both fractional and first-order models. The parameters
used for this part are; within their interval of possible values
as reported in [14]; given by: ε = 0.2, τs = 1.3, τf =
2.2, τ = 0.6, α = 0.34, E0 = 0.32, V0 = 0.027.
Fig. 6 illustrates a comparison between the first order deriva-
tive model, the proposed fractional model and the event-
related data set extracted from SPM website. The results
show that the three features classically used to characterize
BOLD signal: the initial dip, the peak and the post-stimulus
undershoot are better represented with the fractional order
system.
In Fig. 7, a second set of fractional differentiation orders
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Fig. 6: BOLD responses. Red line corresponds to first order
model, blue line corresponds to proposed fractional model.
Green line corresponds to data extracted from SPM website.
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is used. We observe that the time response is larger and the
initial dip is more pronounced.
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Fig. 7: BOLD responses. Red line corresponds to first order
model, blue line corresponds to proposed fractional model.
Green line corresponds to data extracted from SPM website.

VI. CONCLUSION

Mathematical modeling of the neurovascular coupling is
important for the interpretation of the BOLD fMRI data.
The existing models, including the well-known balloon, are
limited in terms of BOLD signal interpretation. In this paper,
the use of FD to model the neurovascular coupling has been
investigated. The simulated BOLD signal of the fractional
model has been compared to the BOLD signal issued using
an integer-order model and also to a set of real data. The
main findings of this study are:
• Fractional modeling of the relation between neural

activity and CBF allows to better fit the BOLD signal.
• The fractional differentiation orders q1 and q2 help to

adjust the simulated BOLD signal to include all the
features. q1 controls the initial dip and the time response
(delay) while q2 affects the duration of the undershoot
and the amplitude of the peak of the BOLD signal.

In future work, more real data sets will be used to
investigate and validate the model. Also, the identification
of the fractional differentiation orders using real BOLD data
will be studied.
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