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Abstract— Recordings from chronically implanted 

multielectrode arrays have become prevalent in both 

neuroscience and neural engineering experiments. To date, 

however, the extent to which populations of single-units remain 

stable over long periods of time has not been well characterized. 

In this study, neural activity was recorded from a Utah 

multielectrode array implanted in the primary motor cortex of 

a rhesus macaque during 18 recording sessions spanning nine 

months. We found that 67% of the units were stable through 

the first 15 days, 31% of units were stable through 47 days, 

21% of units were stable through 106 days, and 8% of units 

were stable over 9 months.  Thus not only were units stable over 

a timescale of several months, but units stable over 2 months 

were more likely to remain stable in the next 2 months. 

 

I. INTRODUCTION 

Chronically implanted multielectrode arrays are 

commonly used in neurophysiological experiments because 

of their ability to record from a large number of units over a 

long period of time.  However, it is useful to know whether a 

unit recorded on the same electrode on different days might 

actually be originating from the same neuron.  Initial 

attempts to track neurons involved visually inspecting the 

waveform shape across days [1], by computing the 

correlation between average waveforms [2], or by comparing 

the clustering in principal component space [3].   However, 

relying purely on the waveform shape along might lead to 

false positives, since different neurons may have a similar 

average waveform.   Subsequent attempts at tracking neurons 

used addition information besides the waveform, such as the 

3-D location relative to a tetrode [4], the inter-spike interval 

histogram [5] or the correlation of neuronal firing with other 

stable neurons [6].   Fraser and Schwartz reported tracking 

stable units in rhesus macaque motor cortex for over 100 

days [6]. 

 

Here, we use the method described in Dickey et al. 

to track neurons over a series of datasets recorded over a 

longer time scale of 265 days.  The recordings occurred 

during an experiment in which a naïve monkey was 

introduced to brain-machine interface (BMI) control of a 
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robotic arm and hand.  Thus the identification of stable units 

over these datasets would allow the examination of learning 

effects during the initial exposure of BMI real-time control. 

 

II. METHODS 

A. Neural Recordings 

All surgical and behavioral procedures involved in this 
study were approved by the University of Chicago 
Institutional Animal Care and Use Committee and conform 
to the principles outlines in the Guide for the Care and Use 
of Laboratory Animals. 

Data used for this analysis were collected from a female 
rhesus macaque (Macaca mulatta) monkey that was 
implanted with a Utah 100-microelectrode array (Blackrock 
Microsystems, Salt Lake City, UT) in primary motor (MI) 
cortex. The macaque had been the recipient of a therapeutic 
amputation 5 years prior due to injury. The array used for 
this analysis was placed contralateral to the intact limb. The 
electrodes on the array were 1 mm in length. During a 
recording session, spike waveforms from up to 96 electrodes 
were amplified (gain of 5,000), filtered between 0.3Hz and 
7.5 kHz, and recorded digitally (14-bit) at 30kHz per 
channel using a Cerebus acquisition system (Blackrock 
Microsystems). On the first experimental session, units were 
sorted online with a hoop-sorting algorithm, described in 
Santhanam et al. [7]. Potential spikes were first identified 
when the filtered voltage dropped below a user-defined 
threshold.  These spikes were sorted by placing a lower and 
upper voltage threshold (the “hoop”) at specific times 
relative to the initial threshold crossing. The same sorting 
rules were applied to the remainder of recording sessions, so 
that the number of sorted units remained constant over time. 
The recordings for this analysis were collected on 18 
separate daily sessions over the course of nine months. The 
first session was recorded 11 months after implantation of 
the array.  

 

B. Behavioral Task 

The macaque performed the same behavioral task on all 
of the recording sessions. In this task, the macaque had to 
learn how to navigate two control dimensions of a robotic 
arm in order to perform a reach-to grasp task. The robot was 
composed of a 7 DOF WAM arm attached to a 4 DOF 
BarrettHand (Barret Technology, Inc.). Through the use of 
operant conditioning, the macaque learned to control the 
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reaching motion towards and away from the base of the 
robot, as well as the grasping motion, opening or closing all 
three digits of the hand concurrently. A successful trial 
would involve reaching-to-grasp a sphere placed on a board 
in front of the robot, pulling it back, and finally dropping it. 

Using neurons identified using online spike sorting, 
distinct clusters of functionally connected groups of neurons 
were created for the purpose of controlling each control 
dimension. Decoders using the neural population activity of 
either group, binned at 50 milliseconds, were initialized in an 
unsupervised manner using spontaneous data [8]. Over the 
course of the study, the macaque learned this mapping such 
that she could coordinate movement along both dimensions 
in order to perform successful trials at an increasing rate.  

 

C. Stability Analysis 

The methodology outlined by Dickey et al. [5] was used to 

analyze the stability of single-units on the array over the 

course of nine months. For each sorted unit, we computed 

the average waveform and interspike interval histogram 

(ISIH). . Waveforms on two different datasets were 

compared by computing the Pearson’s correlation coefficient 

to create a waveform score.  The ISIHs were fit with a 

mixture of the three log-normal distributions, and the 

parameters of that fit were compared to create an ISIH score.  

The waveform and ISIH scores were then combined into a 

single score.  A unit was classified as stable on a given day if 

this combined score fell below a fixed threshold.   
 

III. RESULTS 

Using stability criteria outlined earlier, units were 

classified as either stable or unstable with respect to the first 

recording session. For a unit to be considered stable over the 

course of the entire study, it was necessary for the unit to be 

considered stable in every one of the recording sessions. 

Similarly, for a unit to be considered stable through a 

particular day, it must have been stable on all of the previous 

recording sessions prior up to that day. The survival curve in 

Fig. 1 shows the percentage of stable units through a 

particular day for all of the recording sessions. 

 

Fig. 1 illustrates that around 8% of neurons are stable over 

the entire nine months of the study. After 106 days have 

elapsed, over a fifth of the units are still stable.  An inflection 

point can be observed around 50 days. Around 31% of the 

units are stable through day 47, while around 23% of the 

units are stable through day 98. Thus 75% of the units that 

are stable on day 47 survive the next 51 days.  In contrast if 

we look at earlier recording sessions, about 58% of units are 

stable through day 22, while about 31% of units are stable 

through day 47. So only 53% of the units that are stable on 

day 22 survive the next 25 days. 

 

Fig.2. (Left) Waveforms  and (Right) Interspike interval histograms for a stable unit over 265 days 

 

Fig.1 Survival curve of tracked units. The Y axis shows the percentage 

of stable units, relative to the 137 neurons sorted on day 0. 
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TABLE I.  STABILITY SCORES 

Unit Stability Scores 

# Days 
Stable Unit 

(Fig.2) 

Unstable Unit 

(Fig.3L) 

7  -6.57 -6.03 

14 -10.88 -12.49 

21 -21.19 -3.64 

28 -4.42 -11.05 

35 -3.26 7.56 

41 -6.20 -0.59 

46 -6.60 -11.45 

63 -0.97 0.43 

72 -2.96 1.14 

78 -3.35 2.79 

83 -3.13 0.37 

90 -2.75 1.33 

97 -2.19 -13.16 

105 -2.15 -6.86 

245 -5.07 17.10 

252 -3.21 21.80 

265 -4.23 19.38 

 

An example of a stable unit is provided in Fig. 2. The 

similarity in waveforms across all eighteen of the recording 

sessions over nine of months of recording is quite apparent. 

The same is true for the interspike interval histograms; the 

characteristic bimodal distribution (a  Type II neuron as 

described in Chen & Fetz [9]) can be seen in each session. In 

contrast, Fig. 3 provides a clear example of a unit that 

changes the properties of both the waveform and the ISIH 

between the 15
th

 and 16
th

 dataset.  This is when there was a 5 

month gap in recording, and it appears that the first neuron 

was replaced with a completely different neuron.  This unit 

was classified as stable through the 15
th

 dataset on day 106, 

but not thereafter.  Other unstable units change  properties in 

both the waveform and the ISIH multiple times; in one 

example, the first change occurs between the first data of 

recording and seven days later, the second is, again, between 

the 15
th

 and 16
th

 dataset. Table 1 provides the scores for the 

stability of each unit shown (Fig. 2, Fig. 3) when compared 

with the first day of recording. The threshold for stability 

was below a score of 11.67 as defined by Dickey et al. [5]. 

 

Since the stability criterion relies on scores from based on 

the similarity of both the waveforms and the interspike 

interval histograms, units can fail to be classified as stable if 

they exhibit similarity in one feature but not the other. For 

example, a can show stability in its interspike interval 

histograms throughout the recording sessions, but can fail to 

maintain a consistent waveform.  

 

IV. DISCUSSION 

The most telling result of this study is that we were able to 

identify a subset of neurons that were stable over the course 

of nine months. The stability criterion that we adopted is 

especially conservative, so it is likely that we are 

systematically underestimating unit stability. It could be that 

8% is a more conservative estimate due to the fact that we 

saw units drop out for a couple of recording sessions, only to 

return for the remainder of the experiment. Anecdotally, it 

seems that an electrode can become noisy for a single 

recording session, perhaps because of mechanical disruption 

of the contact between the Utah array and the connector, or 

between the connector and the headstage.  This would lead 

to a unit as being classified as unstable, even if the noise 

were to disappear the next day and the unit to return. One 

way to address this in future work is to allow a unit to drop 

out for a handful of sessions, as long as the unit reappears 

and is still classified as stable afterwards. This will require 

careful consideration of the false positive rate, given the 

multiple comparisons across units and days. 

 

Recording every day instead of every week would give us 

a survival curve to a greater degree of precision. This 

presents the similar issue of determining how many datasets 

a neuron can “miss” and still be classified as stable.  

Additionally, it was not possible to have the same elapsed 

 

Fig.3. (Left) Waveforms and (Right) Interspike interval histograms for an unstable unit over the course of the study. Note the change in both 

waveform and ISIH between day 104 and 245  
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time between datasets.  We might expect of the probability 

of a stable unit disappearing during an interval to increase as 

a function of recording sessions in the interval—i.e. the true 

negative rate within an interval will depend on how often you 

are sampling within that interval. In this collection of 

datasets, five months elapsed between the 15
th

 and 16
th

 

recording sessions as opposed to the otherwise weekly or 

biweekly recording sessions. Around 21% of units were 

stable through the 15
th

 recording session, whereas only about 

8% were stable through the 16
th

 recording session. 

 

This analysis was also completely dependent on the online 

spike sorting from the first recording session In the future, 

we intend to use the online spike sorting from an earlier or 

later dataset so that we can measure how sensitive the 

survival curve is to the online sorting on a particular day. In 

addition, neural data from the first recording session can be 

sorted offline; this sort could then to be applied to all of the 

datasets in lieu of the online sort to measure how sensitive 

the survival curve is to online vs offline spike sorting.  

 

On a similar note, instead of measuring how sensitive the 

survival curve is to spike sorting, we could look at sensitivity 

to the stability threshold that was fixed as a value based on a 

previous stability study [5].   In fact, rather than discretely 

classifying the units as a “stable” or “not stable” for each 

day, we could use the continuous stability score to determine 

the exact day a unit switched from stable to unstable. 

 

Our motivation for applying the stability analysis to this 

particular collection of datasets was to allow us to investigate 

the effects of learning to control a BMI on stable neurons.   

In the learning study described here, the animal was able to 

not only learn, but improve her ability to coordinate and 

control different dimensions of a robotic arm in a reach-to-

grasp task despite what would appear to be instabilities in 

her neuronal units.  She was able to modify and maintain 

function of these clusters of neurons, despite changing 

properties of individual neurons. These experiments can 

speak to how populations of neurons in primary motor cortex 

can impact overall behavioral function in a robust fashion, in 

the presence of dynamic changes at the single-unit level – the 

type of plasticity that has long been implicated in motor 

learning experiments [10] .  

 

In addition, this kind of tracking could be of broader use 

to the science and engineering communities at large. The 

ability to pool neurons across different recording sessions for 

data analysis purposes, or to identify stable units that can be 

consistently used for brain machine interfaces without having 

to retrain decoders could be beneficial. Consequently, 

development of an algorithm that could analyze the stability 

of units online, taking into account their known properties 

and history, could prove very useful in a BMI-context [11]. 
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