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Abstract— Mapping the brain and its complex networked
structure has been one of the most researched topics in the last
decade and continues to be the path towards understanding
brain diseases. In this paper we present a new approach
to estimating the connectivity between neurons in a network
model. We use systems identification techniques for nonlinear
dynamic models to compute the synaptic connections from other
pre-synaptic neurons in the population. We are able to show
accurate estimation even in the presence of model error and
inaccurate assumption of post-synaptic potential dynamics. This
allows to compute the connectivity matrix of the network using
a very small time window of membrane potential data of the
individual neurons. The specificity and sensitivity measures for
randomly generated networks are reported.

I. INTRODUCTION

Network models have always generated significant interest
when being used to describe different physical phenomenon.
They are considered extremely important as they are able
to simulate the intereaction between the different individual
elements. Network models exist in different mathematical
forms such as statistical network models, artificial neural
networks, coupled nonlinear dynamic models and are used in
a variety of applications ranging from social network analysis
to reconstructing the population dynamics of the neurons in
the brain.

We focus on the ability of a coupled nonlinear dynamic
model [1] to reproduce the spiking of a population of
neurons [2] and the problem of computing the unknown
coupling coefficients from the observation of the outputs
of the individual neurons. Understanding the connectivity
in a network of neurons is one of the active problems in
computational neuroscience [3]. Accurate identification of
synapses in the brain and tracking the changes in the synaptic
connections is crucial in the research of brain diseases and in
mapping the functional network of the neurons in the brain.
There are a variety of methods in published literature that
are used to estimate the functional connectivity of the brain.
Statistical testing [4], partial directed coherence [5] and
correlation measures [6] are a few of the approaches that do
not require explicit models. However, these techniques need
significantly long windows of time series data. Considering
that the synaptic connections vary in time, it is not appro-
priate to use long time-windows of data. fMRIs have been
used in [7] to successfully estimate functional connectivity
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in the hippocampal area of the brain but involve expensive
equipment and cannot be implemented in real time. [8] have
implemented Kalman filters to estimate the parameters of a
coupled nonlinear dynamic model from membrane potential
observations. Although this approach does not require large
amounts of data to estimate the connectivity parameters, the
convergence of the parameter estimates largely depends on
the continuous time dynamics of the model used to simulate
the neuronal spiking activity. A large group of neuron models
involve discontinuities at the time of spikes and with a
growing database of hybrid models [9] it is important to
develop a technique that is able to produce results with the
existing discontinuities.

In this paper we use a network of Izhikevich neurons
[10] with linear coupling and exponentially decaying post-
synaptic potentials to simulate population dynamics. The
nonlinear dynamic model is then re-defined as a linear
system with observed and reconstructed variables. We then
use system identification techniques (recursive least squares
estimation) to compute the connectivity parameters of the
linear model. We present accuracy and robustness to noise
results for test data generated by the model itself. To validate
the ability of the method to produce results in real data we
introduce a significant amount of model error by generating
data from a population of Hodgkin-Huxley (HH) [11] neu-
rons. The specificity and sensitivity measures are reported
for a network of twenty neurons.

II. POPULATION DYNAMICS

In this section we describe the nonlinear dynamic model
and the coupling between the individual neurons of the
network. We extend the single neuron model, described
in [10], to represent the dynamics of a neuronal network.
As established in [2] and [12], neurons are connected to
each other by synapses. As pre-synaptic neuron fires a post-
synaptic potential is generated. The collection of the post-
synaptic potentials from all connected pre-synaptic neurons
is the synaptic current, that acts as an input to the post-
synaptic neuron. Fig. 1 is a block diagram representation of
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Fig. 1. Block diagram of the ¢*" neuron in a network.

a single neuron in a network where I; 5, () is the synaptic
current to neuron %, v;(t) is the membrane potential recording
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and s;(t) is the post-synaptic potential. The differential
equations used to model the membrane potential, v;(¢), and
the recovery variable, u;(t) of neuron 7 in the population is

Bi(t) =pirv} () + pigvi(t) + pislui(t) — I(£)] + pia
+ I; syn(t) (1)
Ui (t) =pisvi(t) + picui(t)
We model the synaptic current, I; s, (t) as a weighted sum

of the post-synaptic potentials, s;(¢), modeled as decaying
exponentials with multiple time constants.
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Sim(t) = — —sim(t), m={1,.., M}
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The Izhikevich neuron also employs a discrete reset that is
activated on detecting a spike. If v;(t) crosses the threshold
of 30 mV

0i(t) =pi7; ui(t) = wi(t) + pis; si;m(t) = sim(t) +1 (3)

Egs.1,2,3 together define the nonlinear dynamic model
that generates the spiking pattern observed in a network of
neurons. g is a scaling factor that defines the glial strength
of the population. N is the total number of neurons in
the network. We model the post-synaptic potential as a
decaying exponential with two time constants, 71 = 5ms
and 7o = 300ms. The corresponding scaling coefficients are
a1 = 0.8 and ap = 0.2. wy; is the numerical representation
of the connection from the pre-synaptic neuron i to the
post-synaptic neuron j. It is quantified as +1 if the pre-
synaptic neuron is excitatory, —1 for an inhibitory pre-
synaptic neuron and 0 if neuron’s ¢ and j are not connected.
p; = [pi1, ...,pig]T represents the parameter vector of the
individual neuron ¢ and I(t) is the external input current
that stimulates all of the neurons in the population.

Fig. 2 shows the membrane potentials (left) of all neurons
in the population. It is observed that the spiking activity
is irregular. The spike rate of each neuron depends on
the characteristics and type of the neuron, as well as the
connectivity to the other neurons in the network. The figure
on the right represents the states of an individual neuron of
the population. The synaptic current input is shown on the
top row, membrane potential in the middle row and the post-
synaptic potential in the bottom row.

III. CONNECTIVITY ESTIMATION

We re-define the nonlinear model described in the earlier
section as a linear autoregressive moving average (ARMA)
model. This enables us to then use system identification
techniques to estimate the parameters.

A. Linear system (discrete time) :

Computation of unknown parameters in a linear system
using a least squares based estimation approach is well es-
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Fig. 2. Population dynamics of a network of 20 neurons (left) and
states (synaptic current, membrane potential, post-synaptic potential) of the
individual neurons (right)

tablished. This method can be extended to nonlinear dynamic
models if the following requirments can be met - (a) the
model can be redefined such that it is linear in the parameter
space and (b) the redefined inputs and outputs are in terms
of observable and reconstructed state variables. In our model
of a neuronal population, the membrane potentials of the
individual neurons are observed and the synaptic currents are
reconstructed from the knowledge of the spike times of the
neurons. We assume that the dynamics of the post-synaptic
potential are known.

The continuous time variables described in Egs. 1,2 are
discretized and the Euler’s forward method is used to ap-
proximate the first derivative terms. The constant time-step is
chosen as T' = 0.01. Rearranging the terms and eliminating
the unobserved recovery variable, u;(k), we are able to define
the membrane potential as the output of a linear system. The
nonlinear term in the equation, v;(k)? is treated as a delayed
input to the system to maintain causality and linearity.

N
Ai(2)vi(k) =Bi(2)vsi(k) + > Cij(2)s;(k—1)
j=1,j#i
+D;(2)I(k—1)+d;
where vs;(k) = vZ(k—1). A, B,C and D can be expressed
as FIR filters. Ignoring the 72 terms, they can be written in
terms of the nonlinear model parameter vector, p; and the
synaptic connections, wj;.
Ai(2) =1+ {=2 = (pi2 + pie) T}z
+ {1+ (piz + pis)T}22
Bi(z) =pnT —pnTz""

Cij(z) = [QT] Wiy = {QT} wijz”! ®

“4)

N N
Di(2) = — pisT + pisTz "
di = — piapicT?

k in Eq. 4 is an integer and represents the index. We use z-
transforms to describe the dynamic system where zFox(k) =
x(k + ko).
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B. Recursive least squares estimation :

Parameter estimation in linear systems is a field that has
been extensively researched. There are a variety of existing
system identification algorithms that have performed well in
tests of accuracy, speed and robustness [13]. However, the
performance of such techniques also depend on the dynamics
of the system. We tested different system identification
algorithms on our model - instrumental variable approach,
output error least squares and least squares [14]. We found
that the least squares method, implemented as a recursive
storage algorithm by considering the membrane potential in
between two successive spikes had the best performance with
respect to accuracy and robustness.

The linear ARMA system of a neuronal network (Eq. 4)
can be written in terms of a parameter vector, 6;, that
contains the coefficients of the FIR filters and a regressor,

@i(k).

vi(k) = @i(k)"6; (6)
@i(k) =[vsi(k), vsi(k — 1), s;(k = 1), 5;(k = 2),
I(k = 1), 1(k = 2), u(k), —vi(k = 1), =v;(k — 2)]"

T
0; = [bi0,bi1,¢i50,Cij1,di0,di1,diya1,0:2]

(7

where j € {1,2,--- N}, j # i and vs;(k) = v;(k — 1)2.
u(k) represents the step input.

The linear model represents the continuous dynamics of
the spiking of the neuron, Eqs 1,2. The discrete reset, Eq. 3 in
the neuron model means that the system has a discontinuity
at the time of spikes. We therefore implement the recursive
storage least squares algorithm by computing the parameters
over the time window in between two successive spikes,
known as the inter-spike interval (ISI) [12]. The estimate
is updated over every ISI. This ensures that the discontinuity
in the membrane potential does not affect the system iden-
tification algorithm.

ks
qi,s = Z (pl(k)(pl(k)T’ Qi,s = qi,s + /\Qi,s—l
k=ks_1+%
ks
pi,s = Z (pl(k)yl(k)ﬂ Pi,S = pi,s + APZ'7571
k:ksfl"l‘%
éi,s :Q,:;PZ79
(®)

where k, represents the discrete index of the s*" spike.
Storing the @ and P matrices recursively allows us to
include a forgetting factor, A. By running multiple simu-
lations we found that A = 0.8 ensures that the algorithm
is robust with respect to noise but is capable of estimating
time varying parameters.

The connection parameters, w;; can be coomputed by
using the relations defined in Eq. 5.

~ (Gijo—CGij1)N
wi; = o7

€))

IV. RESULTS
A. Model generated test data :

We first test our method using data generated by the
model. Measurements of the individual membrane potentials
are corrupted by white noise. We report the accuracy of the
method as a function of increasing noise to signal variance.
Fig. 3 shows the mean and standard deviation of the absolute
relative error of parameter estimates for the entire population
(top). The statistics of the distributions for each noise level
are computed across different networks (of 20 neurons) with
40% connectivity. 80% of the neurons were excitatory and
20% were inhibitory. Simulations were run for 2000 ms and
the final estimates are computed by averaging the parameter
convergence results for the last 500 ms. The error is within
acceptable levels for noise percentages less than 5%. The
convergence of some of the parameters and the mean square
error is also shown (bottom). Convergence is achieved in
500m:s.

Mean Absolute Relative Error
(percentage)
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Fig. 3. Mean Absolute Relative Error for varying noise levels and
convergence of parameters

B. Identifying connections in a different neuronal model :

In this section we generate membrane potential data from
neuronal population models (20 neurons with 40 % con-
nectivity) based on the Hodgkin Huxley neuron [11]. The
dynamics of the post-synaptic potentials in the population
were the same as that described in Eq. 2. The pre-synaptic
neurons are classified as excitatory (80 %) and inhibitory (20
%). Fig. 4 shows the trace of a membrane potential from an
HH neuron. The unshaded (white) regions are considered as
the ISI data for the recursive storage least squares algorithm,
Eq. 8. The time of spike is computed by thresholding, and
the spike width is assumed to be 2ms. The bottom subplot
shows the actual (blue) and reconstructed (red) post-synaptic
potentials (psp). We assume that the psp increases during a
spike and then decays exponentially. However, the ‘jump’
and time constant of the decay are incorrectly assumed to
further increase the model error.
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Fig. 4. Observed membrane potential of an individual HH neuron with
the spike (unshaded) and reset (shaded) regions. The spike region is used
as the ISI data to estimate parameters (Eq. 8)

The results of the estimated connectivity matrix for net-
works with directed connections are reported. This is repre-
sentative of a population of neurons in which the presence
of a synapse from neuron i to neuron j does not ensure a
connection from neuron j to neuron <. Methods that compute
the correlation matrix from individual membrane potential
measurements are unable to capture this feature of neuronal
connectivity. The model error introduces a scaling factor
in the estimates. However, the nature of the connection
is computed correctly. We normalize the result to be able
to compare the actual and estimated connectivity matrix
on the same scale. Fig. 5 shows the normalized results
compared to the true connections. We use kmeans [15]
algorithm in MATLAB to cluster the estimated connections
into {4+1,0,—1}. The clustered results are then used to
compute the specificity and sensitivity measures. The means
and standard deviations of 1000 simulations with randomly
generated networks are reported in Table L.

TABLE 1
SPECIFICITY AND SENSITIVITY MEASURES FOR A 20-NEURON
NETWORK.
Specificity  Sensitivity
0.93+0.03 0.87£0.05

Fig. 5. True (left) and estimated (right) connectivity shown on the same
color scale. Red corresponds to a connection strength of +1 and blue
represents —1.

V. CONCLUSIONS AND FUTURE WORK
A. Summary

Our ojective was to estimate the connectivity of a neuronal
population from observations of membrane potentials of
individual neurons. We used linearly coupled Izhikevich
neurons to simulate the population dynamics. The nonlinear
model was mathematically re-defined as an ARMA system
which enabled us to use the least squares algorithm for
system identification. We demonstrated the performance of
this method in the presence of model error by using it to
estimate the connectivity of a network of HH neurons. We
established that the technique produces accurate results for
a network of twenty neurons and is robust to significant
amount of observation noise.

B. Future work

While our method is successful in computing the connec-
tions of moderate size networks, it is important to extend this
to larger networks ( 100 neurons). Also, the technique can
be adapted to be used with other nonlinear dynamic models
with linear coupling, such as extracellular models of groups
of neurons. This would enable us to estimate the synaptic
strengths in in vitro recordings from neuronal tissue.
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