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Abstract— Burst suppression is an inactivated brain state
in which the electroencephalogram is characterized by in-
termittent periods of isoelectric quiescence. Recent modeling
studies have suggested an important role for brain metabolic
processes in governing the very slow time scales that underlie
the duration of bursts and suppressions. In these models,
a reduction in metabolism leads to substrate depletion and
consequent suppression of action potential firing. Such a mech-
anism accounts for the appearance of burst suppression when
metabolism is directly downregulated. However, in many cases
such as general anesthesia, metabolic downregulation occurs
in part as a homeostatic consequence of reduced neuronal
activity. Here, we develop a mean-field model for neuronal
activity with metabolic homeostatic mechanisms. We show
that with such mechanisms, a simple reduction in neuronal
activity due, for example, to increased neuronal inhibition, will
give rise to bistability due to a bifurcation in the combined
neuronal and metabolic dynamics. The model reconciles a
purely metabolic mechanism for burst suppression with one
that includes important dynamical feedback from the neuronal
activity itself. The resulting fast-slow dynamical description
forms a useful model for further development of novel methods
for managing burst suppression clinically.

I. INTRODUCTION

In states of deep general anesthesia and pathologies such
as coma, the brain, while significantly inactivated, neverthe-
less exhibits complex dynamical phenomena. A notable ex-
ample is burst suppression, an electroencephalogram (EEG)
pattern associated with medically-induced coma following
diffuse brain injury [1]–[5]. In burst suppression, the EEG
alternates quasi-periodically between periods of high-voltage
activity (bursts) and flatline (quiescence) [5], [6].

Significant effort has been directed at identifying the
mechanisms of burst suppression at the cellular level [7] and,
in particular, the role of various ion channels and membrane
polarization in mediating the onset and offset of burst events
[8]–[10]. Recent computational models have gone further
in suggesting underlying biophysical mechanisms and why
the state is seemingly common across multiple etiologies.
In [11], the slow time scales associated with burst and
suppression alternation were linked to cerebral metabolism.
Termination of each burst is attributed to depletion of ATP,
the energetic substrate for action potential generation. During
suppression, cessation of spiking allows recovery of ATP
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Fig. 1. Conceptual Diagram of Fast-Slow Dynamics in Burst Sup-
pression. In burst suppression, neuronal activity (x(t)) exhibits bistable
dynamics in which bursts of high voltage activity alternate with periods of
suppression (see, e.g., [5], [11], [13]). Recent modeling efforts [11], [12]
have attributed this phenomenon to a slower modulating physiologic variable
(y(t)) that is depleted during bursts and recovers during suppressions,
resulting in a fast-slow dynamical in the form (1) and (2).

until a critical threshold is reached, and then another burst is
initiated. In [12], a model for burst suppression was devel-
oped using a mean field computational framework. Here, the
slow alternations of burst and suppression were attributed to
physiologic processes such as synaptic neurotransmitter de-
pletion that could also arise due to metabolic depression. The
models in [11] and [12] are similar insofar as they attribute
burst suppression to slower physiologic processes modulating
the faster neuronal activity in a depletion-recovery cycle.
Mathematically, this amounts to a dynamical system with
separated time scales in form of:

ẋ = fαn(x, y) (1)
ẏ = νgαm(x, y), (2)

where x is the ‘neural’ variable of the fast system (1) and y
is the ‘modulation’ variable of the slower process (2) (e.g.,
ATP or neurotransmitter; see Figure 1 for schematic). The
parameter ν governs the time scale of modulation, and αm
determines the rate of recovery. When αm is lowered beyond
a critical threshold, the fast system experiences transition
from continuous activity in x to bistable dynamics (i.e. burst
and suppression), in which the suppression epoch duration
grows as αm is progressively depressed, e.g., as metabolism
is decreased. Here bistable dynamics describe the seeming
phenomenology of burst and suppression. The fast system (1)
may not necessarily have two stable states simultaneously.

In both [11] and [12], αm is directly downregulated as
a function of either increasing anesthetic dose or increasing
pathology. This might be appropriate when modeling direct
metabolic perturbations such as hypothermia or ischemia, but
direct, exogenous manipulation of αm does not take into ac-
count homeostatic mechanisms of metabolic autoregulation.
That is, with decreased neuronal activity comes decreased
cerebral metabolism – lower demand, lower supply – and
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vice versa. For instance, while anesthetic drugs do decrease
cerebral metabolism, this reduction is largely a consequence
of a drug-induced reduction in neuronal activity. Thus, when
modeling anesthesia-induced burst suppression, it may not
be wholly appropriate to simply reduce αm and leave the
dynamics in fαn

(x, y) in Eq. (1) intact, when, in reality, the
primary drug effect is a change in those dynamics.

The purpose of this paper is to: (i) introduce a compu-
tational model for burst suppression that includes homeo-
static mechanisms in the interaction between neuronal and
metabolic processes and; (ii) analyze this model to assess the
extent to which manipulation of only neuronal dynamics can
give rise to burst suppression-like bistability. To investigate
this problem, we formulate a simple mean-field model in the
form of Eq. (1) and (2), in which the slow system (2) corre-
sponds to recovery of metabolic substrate. To this model we
add a sigmoidal homeostatic coupling equation that specifies
αm as a function of x. It turns out that, in the model, bistable
dynamics not only occur for direct (exogenous) reductions
in metabolic recovery, but are also induced through a simple
increase in cortical inhibition, consistent with the actions of
many anesthetic drugs. Consequently, the model provides
a more complete characterization of burst suppression as
induced via general anesthesia.

The remainder of the paper is organized as follows. In
Section II we introduce the model and specify parameters.
In Section III we analyze the model, perform appropriate
bifurcation analysis and demonstrate the important dynamics
regimes. Conclusions and future work are formulated in
Section IV, including a discussion of the implications of the
model in the design of new schemes for clinical management
of burst suppression.

II. MODEL

A. Mean field model of cortical activity

We formulate a model for the dynamical interaction be-
tween fast neuronal activity and slower, supportive metabolic
activity. Since we are not investigating a particular cortical
dynamical regime (e.g., type or frequency of oscillation) per
se, we choose to model neuronal activity with a simple mean-
field description based on the Wilson-Cowan model [14],
[15]. This model characterizes the behavior of excitatory
and inhibitory neuronal populations at the scale of the
cortical macrocolumn. The equations that govern the system
evolution are

ėj = −ej + (ke − reej)F [c1ej − c2ij + kse+ P + φ(t)]
(3)

i̇j = −ij + (ki − riej)F [c3ej − c4ij + kse+Q], (4)

where ej and ij represent the overall activity in the excitatory
and inhibitory populations. The constants P and Q determine
the level of background excitation present in the system.
Depending on these values, the system may exhibit either a
stable equilibrium or periodic limit cycle behavior. Coupling
between columns is dictated by the parameter ks, and e
denotes the vector of all afferent excitatory activity (noting a

slight abuse of notation). The function F is a logistic sigmoid
of the form

F(x) = 1

1 + exp[−a(x− θ)]
− 1

1 + exp(aθ)
, (5)

where a, θ are free parameters.
Our investigation centers on the function φ(t), a gating

process that supports neuronal activity as a function of
metabolic substrate. It is a nonspecific variable and may
correspond to actions of ATP-gated ion channels (e.g., [11]),
excitatory synaptic conductance (e.g., [12]), or other modu-
lating processes. When φ(t) is sufficiently large, the neuronal
population will sustain oscillatory activity. When it is low,
the system will produce a quiescent steady state, under the
assumption that the background parameter P in Eq. (3) is
also sufficiently low.

B. Metabolic model with homeostatic coupling

We now construct a model to describe the evolution of
φ(t) as a function of the neuronal activity given by Eq. (3)
and (4). Specifically,

φ̇ = −µφ+

(
ν exp(κM)

1 + exp(κM)

)
(6)

Ṁ = gr(e)− gc(e), (7)

where M denotes the metabolic substrate that supports the
gating variable φ. To draw a parallel to the mechanism in
[11], M would model extracellular ATP (and the dynamics
of the Sodium-ATP exchange during production of action
potentials), while φ would correspond to the conductance of
an ATP-gated potassium channel. The metabolic substrate is
consumed and restored according to the functions gc(e) and
gr(e), modeled as

gr(e) = (kre
2 + β) (8)

gc(e) = log(kcH4(φ)H2(e) + 1), (9)

where the function Hn(·) denotes an nth order Hill-form
sigmoid and kr, kc are positive constants. Functions (8)
and (9) describe neural-metabolic homeostatic mechanisms.
Any change in excitatory activity results in a compensatory
change in the rate of metabolic recovery, i.e., a supply-
demand homeostatic loop. The constant term β serves as
a baseline rate that models exogenous perturbations to
metabolic recovery.

If Eq. (8) did not depend on e, then the rate of recovery
would be totally decoupled from the underlying neuronal
dynamics (in essence, corresponding to αm in system (2) ).
In this case, any reduction in the basal parameter β could lead
to a bistable regime. By modeling homeostatic dependence
on e we can investigate the extent to which such bistability
might occur through only a manipulation of the neuronal
dynamics (3).

III. RESULTS

We conducted simulations in a system of two Wilson-
Cowan columns, connected via ks in system (4), to demon-
strate the behavior of the model for different parameter
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Fig. 2. Bistable dynamics with direct downregulation of recovery
rate. As expected, decrease in the parameter β leads to a bifurcation from
continuous oscillatory activity to burst suppression-like dynamics. kr =
1.8, kc = 0.36.

regimes. As in [15], the baseline parameters of the model
(1) are

ke = re = ki = ri = 1, ks = 1.5

c1 = 16, c2 = 12, c3 = 15, c4 = 3, P = −4, Q = 0,

θe = 4, θi = 3.7, ae = 1.3, ai = 2

(10)

We consider the following parameterization for Eq. (6):

µ = ν = 0.008, κ = 50. (11)

Since the model is dimensionless, the absolute values of these
parameters do not have direct biophysical meaning and only
the relative value is important. The remaining parameters will
be varied to illustrate different dynamical regimes, below.

A. Direct manipulation of metabolic rate

We first establish the capacity of the model to produce
burst-like activity via direct downregulation of the baseline
metabolic rate β. This manipulation parallels direct modula-
tion of recovery rate parameter in [11].

Figure 2 shows the system output for several choices of
the basal recovery rate parameter β. Here, the parameter P
is chosen such that, for sufficiently large β, the fast neu-
ronal dynamics produce oscillatory activity. As anticipated,
progressive reduction in β produces a dynamical bifurcation
leading to intermittent periods of suppression during which
the modulation process φ(t) is insufficient to sustain high
amplitude activity. As M(t) recovers, φ(t) again facilitates
regeneration of a new oscillatory burst. Figure 3 illustrates
the variation in burst and suppression duration for various
values of the consumption and recovery rate parameters
kc, kr, where we observe that any increase in kc or decrease
in kr leads to shorter bursts and longer suppressions.

B. Decrease in neuronal activity leads to burst suppression-
like activity

We now proceed to demonstrate and analyze a novel
feature of the model (9) – the emergence of a bistable,
burst-like regime achieved via downregulation of only the
neuronal dynamics. In particular, we consider manipulation
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Fig. 3. Burst and suppression duration dependance on kc, kr when
β = 0.09. An increase in kc or decrease in kr shortens the burst duration.
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Fig. 4. Increase in inhibitory coupling parameter c2 leads to burst
suppression-like dynamics. (A) A simple increase in c2 creates a bifur-
cation and bistability. The duration of suppressions is limited by the basal
rate β. (B) If β is itself coupled to c2, suppression epochs progressively
increase. kr = 2.0, kc = 0.3, β = 0.09.

of the parameter c2 in Eq. (3), i.e., the strength on inhibitory
coupling within the cortical model. Such a manipulation
may be thought of as a surrogate for the actions of certain
common anesthetic drugs, such as propofol, that act by
potentiating inhibitory synaptic currents [16], [17]. We note,
however, that it is not this specific manipulation per se, but
rather its consequent reduction in excitatory activity that is
the key factor in the model behavior.

Figure 4 shows the effect of increasing c2 in the combined
model, where the emergence of bistability is clearly seen.
Conceptually, these dynamics can be understood as follows:
when neuronal activity is sufficiently inhibited (i.e., the
amplitude of e decreases), the rate function gr(·) in (8) is
(homeostatically) reduced. Consequently, the slow subsystem
develops limit cycles in an analogous manner to those in
Section III-A above. When the baseline rate β is held
constant, the duration of the suppression is bounded (Figure
4A), since the contribution of the homeostatic coupling
term in (8) is essentially zero during suppressions. If we
include a dependence in β on overall activity via c2, then,
unsurprisingly, the length of suppressions will progressively
increase (Figure 4B). While not presented here, such a
dependence can be additionally modeled through a more
detailed homeostatic mechanism where β itself is a function
of more spatially widespread neuronal activity (see Future
Work, below).
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Fig. 5. Bifurcation structure of model with respect to c2. (A) For
low values of c2, the model possesses a single equilibrium in which the
slow subsystem lies at a fixed point. (B) Beyond a critical value, the slow
subsystem manifests limit cycle oscillations (e.g., in the (φ,M) plane),
leading to bursts of activity in e followed by relaxation (suppression). (C)
Continuation diagram of the slow variable φ with respect to c2 showing
transition from the fixed point to limit cycles. A second bifurcation occurs
at very large c2.

C. Inhibition-induced bifurcation in slow subsystem

Figure 5 illustrates the basic bifurcation structure of the
model with respect to the parameter c2. We note, first, the
presence of the single fixed point in the slow metabolic
dynamics for low values of c2. For the baseline param-
eterization we have chosen, this corresponds to sustained
oscillations in the fast neuronal system. At the critical point
around c2 = 12.3 the system exhibits a bifurcation with
rapid appearance of limit cycles in the slow system (Figure
5B,C). While this bifurcation appears to be of the Hopf-type
(see also, Future Work), the amplitude increases virtually dis-
continuously, implying that regimes with short suppressions
and long bursts are difficult to attain. A supercritical Hopf
bifurcation occurs at c2 = 135, creating a quiescent state for
levels of inhibition above this value.

IV. CONCLUSIONS & FUTURE WORK

In this paper, we have introduced an extension of the
popular Wilson-Cowan mean field model that includes dy-
namics for metabolic support and homeostasis. The key
features of the model are the addition of two variables
that represent metabolic substrate and neuronal modulation.
The model provides a low-dimensional description of the
interaction between neuronal activity and brain metabolism
toward understanding phenomena such as burst suppression.
In the model, burst suppression-like activity is achieved
through downregulation of metabolism. This downregulation
may arise either through direct, exogenous manipulation, or
indirectly through neuronal inactivation. One feature that was
not fully investigated here was the relative changes in burst
and suppression lengths as a function of inactivation. To do
so will likely require coupling the term β to neuronal activity

over a larger, more diffuse spatial (or temporal) scale. In
addition to this issue, several topics will be the study of
future, more detailed work: (i) additional dynamical systems
analysis, including characterization of all bifurcations; (ii)
study of model robustness and sensitivity to the functional
form of homeostatic coupling (8) and (9); and (iii) explicit
inclusion of noise. Due to its tractability, the model here may
also facilitate improved design of nonlinear controllers for
closed-loop anesthesia delivery systems for clinical manage-
ment of burst suppression in medically induced coma [18],
[19].
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