
Computation of Reduced Energy Input Current Stimuli for Neuron

Phase Models

Jason Anyalebechi1, Melinda E. Koelling2, and Damon A. Miller3

Abstract— A regularly spiking neuron can be studied using
a phase model. The effect of an input stimulus current on the
phase time derivative is captured by a phase response curve.
This paper adapts a technique that was previously applied to
conductance-based models to discover optimal input stimulus
currents for phase models. First, the neuron phase response
θ(t) due to an input stimulus current i(t) is computed using
a phase model. The resulting θ(t) is taken to be a reference
phase r(t). Second, an optimal input stimulus current i∗(t) is
computed to minimize a weighted sum of the square-integral
‘energy’ of i∗(t) and the tracking error between the reference
phase r(t) and the phase response due to i∗(t). The balance
between the conflicting requirements of energy and tracking error
minimization is controlled by a single parameter. The generated
optimal current i∗(t) is then compared to the input current
i(t) which was used to generate the reference phase r(t). This
technique was applied to two neuron phase models; in each
case, the current i∗(t) generates a phase response similar to the
reference phase r(t), and the optimal current i∗(t) has a lower
‘energy’ than the square-integral of i(t). For constant i(t), the
optimal current i∗(t) need not be constant in time. In fact, i∗(t)
is large (possibly even larger than i(t)) for regions where the
phase response curve indicates a stronger sensitivity to the input
stimulus current, and smaller in regions of reduced sensitivity.

I. INTRODUCTION

Optimal control theory provides powerful tools for finding

efficient inputs that move a system output to a desired

state [1]. The definition of an efficient input is determined

by a user selected cost function that measures input re-

source usage. Optimization techniques have been applied

to biological systems [2], including control of circadian

rhythms [3]. Optimization techniques have also been used

in neuroscience. Of particular interest here is [4], where

optimization techniques are used to calculate input stimulus

currents with minimized square-integral that output spikes

in neuron phase models at a particular time. A subsequent

work considered the controllability of the time between

spikes for constrained stimuli [5]. Optimal control techniques

have been successfully applied in an experimental setting to

find optimal currents to control spike timing in a biological

neuron [6].

The work described in this paper grew out of applying

optimal control to conductance-based neuron models, such as

the reduced second-order model employed by [7] as studied
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in [8]. The input to this neuron model is an input stimulus

current i(t) and the output is the neuron membrane voltage

v(t). For a range of current waveforms i(t) the neuron output

v(t) was computed; the resulting v(t) was considered to be

a reference waveform r(t). The goal of this “reduced energy

input stimulus discovery method” [8, pg. 186] was to find

optimal currents i∗(t) that produced a neuron membrane volt-

age v∗(t) that closely matched r(t). This was accomplished

by minimizing a cost function that penalized 1) the square-

integral ‘energy’ of the input stimulus current; and 2) the

error between v∗(t) and r(t). One notable feature of this

approach is that the balance between input energy and output

tracking can be varied. Better tracking between v∗(t) and r(t)
was obtained at the expense of an increased input stimulus

current energy. The results showed that significantly reduced

energy input stimulus currents can provide accurate tracking

of the reference waveform. This optimal control method can

be applied to more complex higher dimensional conductance-

based models [9]. Results of these studies were intuitively

pleasing in that one might expect that a reduced energy input

should be able to produce a similar response as a higher

energy current in these models - once a trap is sprung, there

is no need to further press the trigger. Potential applications

of this method include finding reduced energy currents in

electrophysiology experiments. Selecting the neuron model

parameters for optimization rather than the input stimulus

current might lead to more accurate models. Modification

of the cost function to penalize the integral of v(t) ∗ i(t)
(‘real’ energy) could facilitate investigation of neuron model

energy efficiency in producing a desired output along the

lines of [10].

The utility of the “reduced energy input stimulus discovery

method” [8, pg. 186] in studying conductance-based mod-

els led the authors to apply this approach to the neuron

phase model as pioneered by Winfree [11], [12]. While

conductance-based models aspire to capture the underlying

ion channel mechanisms of neuron function, a phase model

is focused on higher level behavior, facilitating studies of

large neuronal networks, where timing of neuron spikes is

of primary interest; see [4], [12], [13] and references therein.

Specifically, this paper considers the phase model

dθ

dt
= f (θ)+Z(θ)i(t) (1)

where θ ∈ [0,2π] is the phase of the neuron, f (θ) is the

neuron “baseline dynamics” [4, pg. 358], i(t) is the input

stimulus current, and Z(θ) specifies a phase response curve

(PRC) which mediates the effect of i(T ) on the neuron phase.
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The neuron fires a spike at θ = 0. Simple constraints on

f (θ) and Z(θ) insure that the neuron phase subsequently

advances from θ = 0 to θ = 2π , at which time another spike

is generated, and θ is reset to 0 [4]. Thus the model input is

the stimulus current i(t) and the output is the neuron phase

θ(t).

Following the general approach of [8], [9], currents i(t)
are input to a model and the resulting phase responses θ(t)
are computed. Optimal control is then used to find optimal

currents i∗(t) that provide varying degrees of tracking accu-

racy between the reference phase r(t) = θ(t) and θ ∗(t) based

on a varying balance between the energy of i∗(t) and the

tracking error. It should be expected that optimized currents

will tend to have 1) larger amplitudes in regions where the

PRC indicates a higher sensitivity of the phase to the input

stimulus current and 2) smaller amplitudes in regions of

lower sensitivity. The utility of regions with differing levels

of sensitivity when computing optimal currents was noted

in [6].

Section II describes a cost function tailored to incorporate

both the energy of the input stimulus current and the tracking

error between the actual and reference neuron phase. The

results shown in Section III demonstrate that the “reduced

energy input stimulus discovery method” [8, pg. 186] can be

adapted to provide a range of phase tracking performance

in two neuron phase models. The models considered in

this paper are the Sinusoidal PRC (Section III-A) and the

SNIPER PRC (Section III-B). Section IV summarizes the

paper findings.

II. METHOD

This section adapts the approach to finding optimal cur-

rents in conductance-based neuron models described in [8],

[9] for use with neuron phase models. As previously de-

scribed, phase models provide a macromodel of neuron

function that is particularly useful in studying large neuronal

networks.

A. Cost Function

The goal is to discover an optimal input stimulus current

i∗(t) that provides a specified balance between the energy

of i∗(t) and the difference between a neuron reference phase

r(t) and the actual neuron phase θ(t) over the time interval

[0,T ], where T is the smallest t such that θ(T ) = 2π . This

balance is achieved through minimization of a cost function

J[i(t)] =
α

2

∫ T

0
[i(t)]2dt +

1−α

2

∫ T

0
[r(t)−θ(t)]2dt (2)

where the weight coefficient α ∈ (0,1] specifies a balance

between input stimulus current energy and the tracking error

between r(t) and θ(t). To emphasize minimization of input

energy at the expense of the tracking error, a large α is

selected. To emphasize reduction of the tracking error at

the expense of input stimulus current energy, a small α

is selected. To find an optimal input stimulus current i∗(t)
which minimizes J (2), the “Continuous Nonlinear Optimal

Controller with Function of Final State Fixed” method [1,

pg. 134] is used. The Hamiltonian generated from (2) is

H(i(t),θ(t),λ (t)) =
α

2
[i(t)]2 +

1−α

2
[r(t)−θ(t)]2

+λ [ f (θ)+Z(θ)i(t)] (3)

and thus
dθ

dt
=

∂H

∂λ
= f (θ)+Z(θ)i(t) (4)

dλ

dt
=−

∂H

∂θ
= (1−α)(r(t)−θ(t))−λ ( f ′(θ(t))+ i(t)Z′(θ))

(5)
∂H

∂ i
= αi(t)+λZ(θ). (6)

The stationarity condition requires that ∂H
∂ i

= 0 enabling i(t)
to be found using the substitution

i(t) =−
λ (t)Z[θ(t)]

α
(7)

yielding the boundary value problem (BVP)

dθ

dt
= f (θ)−

λZ(θ)2

α
(8)

dλ

dt
= (1−α)(r(t)−θ(t))−λ

(

f ′(θ(t))−
λZ(θ)Z′(θ)

α

)

(9)

with boundary conditions

θ(0) = 0 (10)

λ (T ) = 0. (11)

Boundary condition (11) specifies a free final state [1]. Note

that the final time T is fixed. Solving the BVP (8)-(11) yields

λ ∗(t). Substituting the resulting λ ∗(t) into (7) provides an

optimal input stimulus current i∗(t) that minimizes the cost

function J[i(t)] for the selected α . The neuron state resulting

from substituting i∗(t) into (4) and solving the differential

equation is referred to as θ ∗(t).
To summarize, generating an optimal solution is divided

into two processes. In the first process, a stimulus current i(t)
is used as the input in a neuron phase model (1), yielding

the output phase θ(t). The reference phase, r(t), is then

equated to the previously calculated θ(t). The second and

final process requires numerically solving the BVP (8)-(11)

for λ ∗(t) that in turn yields the optimal input stimulus current

i∗(t). This can be done for various values of α , placing

greater emphasis on either the input stimulus current energy

or the tracking error between r(t) and θ ∗(t). As a check,

using i∗(t) as the input current stimulus i(t) in the original

model (1) must yield θ ∗(t). Fig. 1 illustrates the solution

process. MATLABTM was used to obtain these solutions.

III. RESULTS

This section presents results of applying the previously

described method for two phase models studied in [4]: the

Sinusoidal PRC Phase Model and the SNIPER PRC Phase

Model.
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Fig. 1. Input Stimulus Current Optimization Process

A. Sinusoidal PRC

Setting f (θ) = ω = 2 and Z(θ) = sin(θ) in the phase

model (1) yields [4]

dθ

dt
= f (θ)+Z(θ)i(t) = 2+ sin(θ)i(t). (12)

This phase model generates a spike at T ≈ 3.6292s for

i(t)= 1, where θ(T )= 2π . Finding an optimal input stimulus

current i∗(t) that minimizes (2) proceeds as follows. An

input stimulus current i(t) is used in the phase model (12)

to produce θ(t). The reference phase r(t) is set equal to

θ(t), an α is selected, and i∗(t) is found by minimizing (2).

The optimal input stimulus current i∗(t) produces θ ∗(t).
Fig. 2 shows i(t) and i∗(t) in the top row and θ(t) and

θ ∗(t) in the bottom row. Note that even though i∗(t) has

peaks that exceed i(t), all discovered i∗(t) have reduced

energy as compared to i(t). As α is decreased, the energy of

the optimal current i∗(t) increases, while the tracking error

between θ(t) and θ ∗(t) improves. With larger α , the current

i∗(t) has lower energy and θ ∗(t) does not track θ(t) well.

Fig. 3 plots the input stimulus current i(t) and the optimal

input stimulus current i∗(t) against the neuron phase state

θ(t). Z(θ) is also shown. Dips in the magnitude of i∗(t)
correspond to values of θ(t) for which Z(θ) is close to 0,

i.e. to those values of θ(t) for which the phase model is least

responsive to the current input stimulus.

B. Sniper PRC

Setting f (θ) = ω = 2 and Z(θ) = 1−cos(θ) in the phase

model (1) yields [4]

dθ

dt
= 2+(1− cos(θ))i(t). (13)

This phase model spikes at T ≈ 2.2224s for i(t) = 1, where

θ(T ) = 2π . Fig. 2 shows that a smaller α again produces

close tracking between r(t) = θ(t) and θ ∗(t). Fig. 3 shows

that the optimal input stimulus current i∗(t) moves to a higher

magnitude when Z(θ) has a large magnitude and conversely

a lower magnitude value of i∗(t) is obtained when Z(θ) has

a lower magnitude.

IV. CONCLUSIONS

The “reduced energy input stimulus discovery method” [8,

pg. 186] previously developed for conductance-based neuron

models has been adapted for use in two neuron phase

models studied in [4]. This technique finds optimal input

current stimuli i∗(t) that result in tracking a reference phase

originally produced with an input stimulus current i(t) hav-

ing a larger square-integral ‘energy’. The method is just

as effective with phase models as with conductance-based

models [8], [9]. Furthermore, this paper provides significant

insight into the differences between i(t) and i∗(t), owing to

the prominence of the phase response curve role in neuron

dynamics, as described next.

The phase response curve for each considered case can

be used to understand differences between the original input

stimulus current i(t) and the optimal input stimulus current

i∗(t). When the input and optimal currents are plotted

against the neuron phase θ(t) and compared to the phase

response curve as in Fig. 3, it is evident that the optimal

stimulus current energy is 1) primarily applied where the

phase response curve of the particular phase model is most

sensitive; and 2) reduced where the phase response curve has

reduced sensitivity. As α is decreased, the tracking between

r(t) = θ(t) and i∗(t) is improved, at the expense of an

increase in the energy of i∗(t), indicated by a broadening

of the area of the optimal input stimulus current i∗(t).
In this paper the output of a phase model θ(t) was used

as the reference signal r(t); however, it may be possible to

use other functions for the reference signal r(t) that span

[0,2π]. This may be useful in an experimental setting, in

which a desired reference signal may obtained from a from

measurements of a physical cell.

Future studies may incorporate the addition of noise to

mimic other environmental factors that may affect neural

phase measurements. This application of optimal control may

not only be valuable in the calculation of optimal input

currents in neural phase models, but in other types of phase

models as well. It might be useful in the calculation of

optimal input currents for dynamic clamp phase models [14].

This work may provide a framework with which to study

controllability of neuron phase models, that is, the extent to

which the model neuron can be forced by correct choice of

input to produce a desired θ(t), in a manner similar to [13],

[5].
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Sinusoidal PRC Model
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SNIPER PRC Model
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Fig. 2. Results for the Sinusoidal PRC Model with α = {0.1,0.05,10−4} and T = 3.6292s and the SNIPER PRC Model with α = {0.5,0.2,10−4} and
T = 2.2224s. In each case the constant i(t) (dashed) produces the reference phase r(t) = θ(t) (dashed). The computed optimal input stimulus current i∗(t)
(solid) results in θ ∗(t) (solid). As α is decreased, the tracking between r(t) = θ(t) and θ ∗(t) is improved at the expense of an increase in the energy of
i∗(t).
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Phase Plots

Z(θ), i(t), i∗(t) vs. θ(t)

Sinusoidal PRC Model
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SNIPER PRC Model
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Fig. 3. Input stimulus current i(t) (dashed curve), optimal input stimulus current i∗(t) (solid ♦ curve, bottom), and Z(θ) (solid � curve, top) plotted
against the neuron phase state θ(t) for the two considered models. The left y-axis is the scale for Z(θ) while the right y-axis is the scale for the stimulus
currents. The magnitude of the optimal input stimulus current i∗(t) is reduced as compared to the original current i(t) in regions where the magnitude of
Z(θ) is close or equal to zero.
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