
  

 

Abstract— The objectives of this study are (1) to develop a 

novel “moderation” model of drug chemosensitivity and (2) to 

investigate if miRNA expression moderates the relationship 

between gene expression and drug chemosensitivity, specifically 

for HSP90 inhibitors applied to human cancer cell lines. A 

moderation model integrating the interaction between miRNA 

and gene expressions was developed to examine if miRNA 

expression affects the strength of the relationship between gene 

expression and chemosensitivity. Comprehensive datasets on 

miRNA expressions, gene expressions, and drug 

chemosensitivities were obtained from National Cancer 

Institute’s NCI-60 cell lines including nine different cancer 

types. A workflow including steps of selecting genes, miRNAs, 

and compounds, correlating gene expression with 

chemosensitivity, and performing multivariate analysis was 

utilized to test the proposed model.  

The proposed moderation model identified 12 significantly-

moderating miRNAs: miR-15b*, miR-16-2*, miR-9, miR-126*, 

miR-129*, miR-138, miR-519e*, miR-624*, miR-26b, miR-30e*, 

miR-32, and miR-196a, as well as two genes ERCC2 and SF3B1 

which affect chemosensitivities of Tanespimycin and 

Alvespimycin—both HSP90 inhibitors. A bootstrap resampling 

of 2,500 times validates the significance of all 12 identified 

miRNAs. The results confirm that certain miRNA and gene 

expressions interact to produce an effect on drug response. The 

lack of correlation between miRNA and gene expression 

themselves suggests that miRNA transmits its effect through 

translation inhibition/control rather than mRNA degradation. 

The results suggest that miRNAs could serve not only as 

prognostic biomarkers for cancer treatment outcome but also as 

interventional agents to modulate desired chemosensitivity. 

I. INTRODUCTION 

There has been an increased interest in finding 
customized predictors of a patient’s response to anticancer 
drugs in the drive toward precision medicine [6]. Studying 
miRNAs’ roles in drug chemosensitivity helps (1) to develop 
“predictive tests of drug efficacy” [20, p. 629] and (2) to 
understand “mechanisms of drug action” [20, p. 631]. 
Regarding the first goal, pharmacogenomics research aims to 
accurately predict a patient’s response to drugs in order to 
deliver individualized treatment. Such personalized medicine 
is especially important in cancer therapy where drugs often 
have side effects and may be ineffective in some people [23]. 
Because miRNAs affect gene functions and expression levels 
of certain genes can influence drug chemosensitivity [20], 
miRNAs may play important roles in tumor response to 
drugs [8] and have potential for predicting response to 
treatment [22]. Thus, “the pharmacogenetic analysis of 
miRNAs may represent an innovative field of research for 
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predicting treatment response or chemoresistance.” [8, p. 
111] Regarding the second goal, testing a novel statistical 
“moderation” model that is also consistent with the current 
understanding of how miRNAs function can shed light on 
how miRNAs transmit their effect upon chemosensitivity. 
The NCI-60 datasets are useful in this regard since the data 
is centered on common variants in the entirety of human 
population and drug response [1]. Based on a search on 
PubMed, this study is the first analysis of NCI-60 datasets to 
examine the moderation, as opposed to the direct, effect of 
miRNA on chemosensitivity. Research on prognostic use of 
miRNAs is at an “early stage” [8, p. 115], and the 
incorporation of miRNA to traditional genomics in treatment 
tailoring is still an incipient field. Because of their role in 
cancer pathogenesis “miRNAs could represent predictive 
markers of treatment outcome in oncology” [6]. 

II. BACKGROUND 

First identified in 1993, miRNAs belong to a category of 
non-protein encoding RNA molecules whose primary 
function is to repress the action of specific messenger RNA 
(mRNA) molecules [20]. As shown in Fig. 1, this function is 
accomplished either by promoting mRNA degradation or by 
inhibiting mRNA translation into protein [9, 20]. 
Specifically, miRNAs operate at the post-transcriptional 
level in binding to partially complementary sequence motifs 
at target sites mainly in the 3´-UTRs of corresponding 
mRNAs, though binding sites also have been reported to 
exist in the 5´-UTRs as well as the open reading frame [7]. 
Recent research has also demonstrated a positive regulation 
ability of miRNA where mRNA translation might be 
oppositely enhanced. miRNA’s positive regulation 
capabilities may be the result of encouraging mRNA-
stabilizing factors [6]. Because gene expression is 
characterized by mRNA which continues to the ribosome to 
support protein synthesis, miRNA’s regulating effect on 
mRNA also suggests that miRNA affects gene expression. 
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Figure 1.  Mechanisms of miRNA regulation (after [20]). 
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III. DRUG CHEMOSENSITIVITY MODEL 

Previous studies of predictors of drug chemosensitivity 
have focused on the link between gene expression and drug 
chemosensitivity [e.g., 14, 17, 23], and that link is 
conceptually shown in Fig. 2.  
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Figure 2.  Baseline gene model. 

The regression equation characterizing this model is: 
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Y is drug response or chemosensitivity; Xgene is gene 
expression level. 

As described above, recent efforts have started looking at 
the role played by miRNA in drug chemosensitivity, and 
studies of miRNA pharmacogenomics have examined the 
link between miRNA expression and drug chemosensitivity 
[e.g., 17, 22] utilizing the conceptual (baseline miRNA) 
model shown in Fig. 3. 
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Figure 3.  Baseline miRNA model. 

The regression equation characterizing the baseline 
miRNA model is (XmiRNA is miRNA expression level): 
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However, there is not likely a simple relationship 
between miRNA expression and drug chemosensitivity [22]. 
Although ultimately it is the genes that code proteins which 
affect drug chemosensitivity, miRNAs are now understood to 
play a role in regulating gene functions. Thus, there are 
fundamentally three variables: miRNA expression, gene 
expression, and drug chemosensitivity. Past studies have 
mostly focused on the relationship either between gene 
expression and chemosensitivity or between miRNA 
expression and chemosensitivity. As such, it is critical to 
integrate miRNA expression data with gene expression data 
to predict drug chemosensitivity, and a multivariate analysis 
in associating miRNA expression and drug resistance [7] is 
needed. Because “genes affected by a miRNA pathway are 
often involved in cellular response to cancer drugs” [my 
italics] [2, p. 3129], a “moderation” model [10] specification 
is proposed by which miRNA expression interacts with gene 
expression to exert a “moderator” effect on drug 
chemosensitivity. It is therefore hypothesized that, in the 
context of prognostic biomarkers, miRNA expression 
moderates the relationship between gene expression and drug 

chemosensitivity. To put it another way, the strength of gene 
expression’s effect on chemosensitivity is modulated by 
miRNA expression. The moderation model is supported 
conceptually because gene expression levels can modulate 
drug response, and miRNAs are known to regulate gene 
functions. 

This new moderation model specification (not previous 
adopted by other studies), shown in Fig. 4, has three 
advantages: First, it grounds statistical testing of models in 
the current theory of how miRNAs operate. Second, it 
clearly shows conceptual links and directions of influence 
and is not a “black-box” model. Third, it is a parsimonious 
model that is also multivariate in nature (which responds to 
the call for multivariate analysis in miRNA studies [7]). 
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Figure 4.  New moderation model. 

The moderator effect is expressed by including an 
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hypothesized model which can be stated as: 
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Another interpretation of the proposed model is that because 
miRNA expression affects gene functions, gene expression  
Xgene and miRNA expression XmiRNA are not orthogonal (as 

implied by 
miRNAmiRNAgenegene

XXY   ), hence an 

interaction term is needed. The model suggests a complex, 
obscure relationship in the link between chemosensitivity 
and miRNA and gene expressions. The proposed model is 
novel as a literature search on PubMed revealed no study 
that explicitly tests for statistical interaction effects between 
miRNA and gene expressions on drug chemosensitivity.  

IV. METHODS 

Fig. 5 shows the workflow of the steps performed by this 
study to obtain the results. These steps are described in more 
detail in the following subsections. 

A.  Cell Line Data 

This study utilizes datasets generated from the NCI-60 
cell lines, used for anticancer drug screening, provided by 
the National Cancer Institute (NCI). NCI-60 consists of 60 
cell lines from nine human cancer tissues: breast, central 
nervous system, colon, kidney, leukemia, lung, melanoma, 
ovary, and prostate and “remains the most powerful human 
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cancer cell panel for high throughput screening of anticancer 
drugs.” [16, p. 1947] A study spanning different cancer types 
is also appropriate in the context of miRNAs because 
miRNAs “exhibit an ability to shift global gene expression in 
an appreciable manner” [20, p. 631]. Data on gene 
expression, miRNA expression, and drug chemosensitivity 
were obtained in the beginning of October, 2013, from the 
NCI-60 cell line database maintained by the NCI, and data 
were obtained in the “standardized” form of z-scores, which 
included data on 26,065 genes, 360 miRNAs, and 20,503 
compounds. Out of these compounds, 110 are Food and 
Drug Administration (FDA)-approved drugs and 54 are in 
clinical trial. 

NCI-60

cell line data

Eliminate six leukemia 

cell lines [3]

Data for 60 cell lines

Data for 54 cell lines

Select genes identified as 

important in cancer  by 

TCGA project [15]

(out of 26,065 genes)

Impute 4 missing miRNA 

expression values [12]

(out of 360 x 54 = 19,440 

data points)

miRNA 

expression

data for 

360 miRNAs

Gene

expression

data for 

125 genes

Chemosensitivity

data for

3 compounds

in HSP90 MOA

miRNA expression

data for 

360 miRNAs

Gene

expression

data for 

125 genes

Impute 13 missing gene 

expression values [12]

(out of 125 x 54 = 6,750 

data points)

Select compounds with no 

missing data values in 

drug category (MOA) [17] 

with largest percentage of 

drugs in clinical trial

(out of 20,503 compounds)

Select all miRNAs 

(out of 360 miRNAs)

Compute 

Cook’s D and leverage 

to eliminate outliers [13]

Correlate gene expression 

with chemosensitivity to 

identify significant genes 

to compounds [17]

Perform

multivariate analysis [4,13]

Results  

Figure 5.  General workflow for assessing if miRNA expression moderates 

the relationship between gene expression and drug chemosensitivity. 

B. Quality Controls: NCI-60 

NCI-60 datasets used strictly quality control of gene 
expression, miRNA expression, and chemosensitivity data 
[19]. The accuracy and reliability of the data were improved 
by transforming each probe measurement into a z-score that 
integrated results produced by the different platforms. Gene 
expression data were generated using five microarray 
platforms and integrating all pertinent probes across these 
five platforms: the Affymetrix Human Genome U95 Set, the 
Affymetrix Human Geonome U133, the Affymetrix Human 
Genome U133 Plus 2.0 Arrays, and the Affymetrix 
GeneChip Human Exon 1.0 ST array, and the Agilent Whole 
Human Genome Oligo Microarray. Probe intensity values 
(and their z-scores) must pass additional quality control 
measures to be included in the datasets [19]. miRNA 
expression data were produced using the Agilent 
Technologies 15k feature Human miRNA microarray (V2) 
and had to pass prescribed quality control metrics; those 
miRNA microarrays which did not pass were not included in 
the miRNA data [17]. 

Drug chemosensitivity data were produced using the 
sulphorhodamine B assay by the NCI Developmental 
Therapeutics Program (DTP). The data are z-scores of  
-10log10(GI50); GI50 is defined as the concentration 
required to inhibit (tumor) cell growth by 50% at 48 hours as 
determined by the DTP [17], so higher values of  
-10log10(GI5) means higher drug response/chemosensitivity. 
Drug response experiments also had to pass similar quality 
control criteria [19]. 

C. Data Preprocessing: This Study 

To further improve the quality of results, data 
preprocessing steps were implemented specific to this study 
and are in addition to NCI’s generation of its datasets. First, 
the six leukemia cell lines in the NCI-60 datasets were 
expurgated prior to analysis. The hypersensitivity of 
leukemia to drugs makes data analysis difficult and harder to 
generalize across different cancer types. Thus, 54 non-
leukemia cell lines were utilized for analysis [3], and for this 
study, there were effectively 54 trials carried out. 

Second, this study used an objective set of criteria to 
eliminate outliers in the data. Specifically, statistical 
measures of Leverage and Cook’s Distance (Cook’s D) were 
used. Leverage measures how much a data point is unusual 
as compared to the independent variables [13], and Cook’s 
Distance measures how much a data point substantially 
influences the regression itself [10]; those data points whose 
leverage values exceeded 3(p + 1)/n were eliminated [13] as 
outliers where p (= 3) is the number of predictors and n (= 
54) is the number of samples. Thus the threshold value for 
Leverage is 3(3 + 1)/54 = 0.2222. In addition, those data 
values whose Cook’s D exceeded a threshold value of 1 were 
eliminated [13] as well. These objective measures were used 
to identify outliers to minimize subjective bias, and 
removing outliers minimizes a data point’s undue impact on 
statistical testing. 

Lastly, a form of statistical control is built into the 
multivariate structure of the drug chemosensitivity model 
(Fig. 4), which has standalone terms of gene expression 
(Xgene) and miRNA expression (XmiRNA) in addition to the 
interaction term (XgeneXmiRNA) in (3). This model structure 
effectively examines the relationship between the interaction 
term (Xgene XmiRNA) and drug chemosensitivity (Y) while 
controlling for (Xgene) and (XmiRNA) [13]. 

D. Gene and miRNA Selection 

While individualization of treatment is one of oncology’s 
goals, so is the identification of common therapeutic 
strategies against tumors. Doing so would narrow the search 
for significant predictors, miRNA included, of outcome such 
as drug chemosensitivity. Accordingly, out of the 26,065 
genes in the NCI-60 datasets, this study emphasized on the 
127 genes identified as significant across major cancer types 
by The Cancer Genome Atlas (TCGA) project based on 
well-known and emerging cellular processes in cancer [15]. 
However, two of those 127 genes are not available in the 
NCI-60 datasets, leaving 125 genes to be analyzed. Of these 
genes, 13 genes have a null value (gene expression data was 
missing), each in the central nervous system (CNS) 
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CNS:SF_539 cell line. Instead of deleting the CNS:SF_539 
cell line, these 13 gene expression values were imputed by 
mean substitution [12], so there are 13 imputed values out of 
a total of 125 x 54 = 6,750 gene expression values.  

For miRNA expression data, all 360 miRNAs for which 
miRNA expression data are available were utilized. Of these 
miRNAs, four miRNAs have a null value each (miRNA 
expression data was missing): miR-29b-1* for the breast 
(BR) BR:MDA_MB_231 cell line, miR-135a* for the 
melanoma (ME) ME:LOXIMVI cell line, miR-136 for the 
CNS:SNB_19 cell line, and miR-455-3p for the ovary (OV) 
OV:NCI_ADR_RES cell line. These four miRNA expression 
values were also imputed by mean substitution [12], so there 
are four imputed values out of a total of 360 x 54 = 19,440 
miRNA expression values. 

E. Compound Selection 

Several criteria were utilized to select the compounds for 
analysis. First, only those compounds with known 
mechanism of action (MOA) from the NCI DTP were to be 
considered [17]. Second, only those compounds that are 
either FDA-approved or in clinical trial were to be 
considered. Third, only those drugs that have no null value 
(missing data) across all 54 NCI-60 cell lines were to be 
considered. This way, imputation of null values was avoided 
for the dependent variable, and sole observation of actual 
response of the dependent variable to changes in the 
independent variables was preserved. Lastly, special 
attention was paid to a single class of drug, relatively new, 
with the largest percentage of drugs in clinical trial in that 
MOA category (MOA category with two or fewer drugs in 
clinical trial were not considered).  This class of drugs was 
HSP90 (Heat Shock Protein 90 inhibitor) in the MOA 
category. Three drugs with complete chemosensitivity data 
were available for analysis in this category: NSC#255109: 
Oral HSP90 Inhibitor IPI-493 (in clinical trial), 
NSC#330507: Tanespimycin (in clinical trial), and 
NSC#707545: Alvespimycin (in clinical trial). Incidentally, a 
search of HSP90 and miRNA on the NIH PubMed 
publication database as of December 2013 turned up no 
study on the relationship between miRNA and HSP90. This 
search result suggests that this study is among the first to 
examine miRNA as prognostic biomarkers to anticancer 
drugs in the HSP90 MOA category. 

Heat Shock Protein 90 (HSP90) serves to regulate 
several cancer-associated proteins through a chaperoning 
activity [21]. In fact, the HSP90 molecular chaperone affects 
over 200 various “client proteins” [11], of which many are 
necessary components to cell survival and reproduction. 
Because a considerable number of these client proteins are 
oncogenic and cancers often have overexpression of HSP90 
(2-10 fold higher levels in tumor cells versus normal tissue 
cells [18]), drugs that inhibit HSP90 function have effective 
anticancer properties.  

F. Statistical Analysis 

Similar to the approach taken by [17], genes are first 
included “…on the basis of high correlation to drug activities 
in the NCI-60” [17, p. 1087]. In this study, genes were 

selected for subsequent analysis based on the Bonferroni 
threshold [13] p-value of 0.05/125=0.0004. Then, a 
correlation analysis of the gene expression data (for 125 
genes) against the drug chemosensitivity data (for three 
drugs) produced 3 x 125 = 375 Pearson correlations. The 
following subset of genes (expressions) showed significant 
correlations with chemosensitivity profiles of HSP90 MOA: 

 Between ERCC2 expression and Tanespimycin 
chemosensitivity. 

 Between SF3B1 expression and Tanespimycin 
chemosensitivity. 

 Between ERCC2 expression and Alvespimycin 
chemosensitivity. 

No significant correlation was detected between the drug 
chemosensitivity of Oral HSP90 Inhibitor IPI-493 and any 
one of the 125 gene expressions. 

Based on these results, multiple regression analysis was 
performed using the moderation model shown in Fig. 4 and 
(3). Specifically, the dependent variable is Tanespimycin 
chemosensitivity, the first independent variable Xgene is 
ERCC2 expression, and the second independent 
(moderating) variable XmiRNA is miRNA expression. The 
“slope test” [4, p. 6] was used to test if the coefficient (i.e., 

slope) of the interaction term )(
   miRNAgenemiRNAgene

XX
x

 is 

significant. If the interaction term is significant, then the 
corresponding miRNA expression is deemed to be 
significant in moderating the relationship between gene 
expression and chemosensitivity. 

Initially, 41 miRNAs were found to be significantly 
moderating the relationship between gene expression and 
chemosensitivity. Cook’s D and leverage values were 
computed. Based on these values, outliers were identified 
and eliminated. Then multiple regression analysis was 
performed again without the outliers to minimize Type I 
error (finding a relationship when there is none) and the 
slope test applied. After the elimination of outliers, 12 
miRNAs were found to be significantly moderating the 
relationship between gene expression and chemosensitivity. 

The process defined in the two paragraphs above was 
repeated with the drug Tanespimycin and the gene SF3B1, as 
well as with the drug Alvespimycin and the gene ERCC2. 

V. RESULTS 

Certain miRNAs moderate the relationship between 
gene expression and drug chemosensitivity. Table I shows 
the results on the 12 significantly-moderating miRNAs. The 
βgene column shows the standardized coefficients of the term 
Xgene—the direct effect from gene expression to 
chemosensitivity, whereas the βgene x miRNA column shows the 
standardized coefficients of the term XgeneXmiRNA —the effect 
from the interaction between miRNA and gene expressions. 
The p-values of these standardized coefficients are also 
shown. In addition, R

2
 is the (%) variation in the dependent 

variable that can be explained by the independent variable 
[10]. Table I shows the unbiased R

2
 [13], or adjusted R

2
 for 

each moderation model. 
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A positive βgene coefficient  shows that when the 
expression of the gene increases, the drug activity increases 
and cells become more sensitive to the drug, and a negative 
βgene coefficient  shows that when the expression of the gene 
increases, the drug activity decreases and cells become less 
sensitive (or more resistant) to the drug. Applying the 
moderation model (Fig. 4) and including the interaction term 
XgeneXmiRNA add another dimension to the understanding of 
chemosensitivity. For example, when the direct gene 
coefficient βgene is positive but the interaction coefficient 
βgene x miRNA is negative, then higher levels of miRNA 
expression are associated with chemosensitivity being less 
responsive to gene expression. The interaction between 
miRNA and gene is examined in more detail in the next 
section. 

TABLE I.  MODERATION MODEL: SIGNIFICANCE OF INTERACTION 

TERMS 

Direct Interaction βgene 

βgene 

p-value βmiRNA 

βmiRNA 

p-value βgene x miRNA 

βgene x miRNA 

p-value

Adj.

R2

ERCC2→Tanespimycin ERCC2 x miR-15b* -0.546 0.000 0.167 0.139 0.237 0.043 0.420

ERCC2→Tanespimycin ERCC2 x miR-16-2* -0.504 0.000 0.045 0.709 0.267 0.032 0.299

SF3B1→Tanespimycin SF3B1 x miR-9 0.436 0.000 0.078 0.504 -0.388 0.002 0.402

SF3B1→Tanespimycin SF3B1 x miR-126* 0.362 0.009 0.094 0.433 -0.313 0.024 0.305

SF3B1→Tanespimycin SF3B1 x miR-129* 0.258 0.054 0.018 0.881 -0.465 0.001 0.361

SF3B1→Tanespimycin SF3B1 x miR-138 0.454 0.001 -0.190 0.213 -0.422 0.006 0.397

SF3B1→Tanespimycin SF3B1 x miR-519e* 0.362 0.007 0.110 0.380 -0.342 0.010 0.289

SF3B1→Tanespimycin SF3B1 x miR-624* 0.392 0.002 0.099 0.402 -0.353 0.006 0.348

ERCC2→Alvespimycin ERCC2 x miR-26b -0.394 0.002 0.275 0.040 0.337 0.012 0.303

ERCC2→Alvespimycin ERCC2 x miR-30e* -0.420 0.001 -0.044 0.694 0.353 0.004 0.367

ERCC2→Alvespimycin ERCC2 x miR-32 -0.434 0.000 0.200 0.061 0.365 0.001 0.494

ERCC2→Alvespimycin ERCC2 x miR-196a -0.417 0.003 -0.009 0.931 -0.350 0.014 0.440  

0.000 ≤ p ≤ 0.001

0.001 < p ≤ 0.01

0.01 < p ≤ 0.05  

Table I shows the following miRNAs whose expressions 
significantly moderate the relationship between gene 
expression and chemosensitivity (i.e., whose coefficient 
βmiRNA x gene is significant): 

 miR-15b* and miR-16-2* between ERCC2 
expression and Tanespimycin chemosensitivity.  

 miR-9, miR-126*, miR-129*, miR-138, miR-519e*, 
and miR-624* between SF3B1 expression and 
Tanespimycin chemosensitivity. 

 miR-26b, miR-30e*, miR-32, and miR-196a between 
ERCC2 expression and Alvespimycin 
chemosensitivity. 

The significance of moderating miRNAs is validated 
by regression bootstrap technique. “Bootstrap” samples 
can be created by sampling the 54 cell lines with 
replacement, effectively treating all available 54 cell lines 
(N=54) as a population. By repeating the above procedure 
2,500 times, the procedure yields an ensemble of coefficients 
whose significance can then be evaluated [13]. Table II 
confirms that all the interaction term coefficients βgenexmiRNA 
are significant (last column). One advantage of 
nonparametric tests like bootstrapping is that they are not 
affected by outliers [13] as an outlier may (or may not) be 
just one of the data points drawn in one of the many 
resampling procedures. Based on bootstrapping, all 12 gene-
miRNA interaction terms shown above are significant. 

TABLE II.  MODERATION MODEL: SIGNIFICANCE OF INTERACTION 

TERMS IN BOOTSTRAPPING 

Direct Interaction

βgene 

p-value

βmiRNA 

p-value

βgene x miRNA 

p-value

ERCC2→Tanespimycin ERCC2 x miR-15b* 0.000 0.162 0.000

ERCC2→Tanespimycin ERCC2 x miR-16-2* 0.000 0.684 0.001

SF3B1→Tanespimycin SF3B1 x miR-9 0.004 0.411 0.026

SF3B1→Tanespimycin SF3B1 x miR-126* 0.001 0.263 0.004

SF3B1→Tanespimycin SF3B1 x miR-129* 0.001 0.898 0.033

SF3B1→Tanespimycin SF3B1 x miR-138 0.000 0.086 0.000

SF3B1→Tanespimycin SF3B1 x miR-519e* 0.001 0.193 0.003

SF3B1→Tanespimycin SF3B1 x miR-624* 0.000 0.217 0.000

ERCC2→Alvespimycin ERCC2 x miR-26b 0.001 0.058 0.012

ERCC2→Alvespimycin ERCC2 x miR-30e* 0.003 0.873 0.006

ERCC2→Alvespimycin ERCC2 x miR-32 0.036 0.018 0.003

ERCC2→Alvespimycin ERCC2 x miR-196a 0.012 0.541 0.020  

 

0.000 ≤ p ≤ 0.001

0.001 < p ≤ 0.01

0.01 < p ≤ 0.05  

VI. DISCUSSIONS 

In terms of predictor variables of biomarkers, miRNA or 
gene expression has a column of data containing the profile, 
across 54 cell lines, of biological characteristics (miRNA or 
gene expression) that may interact to affect chemosensitivity 
of a tested drug. In terms of the outcome variable of 
chemosensitivity, each drug has a unique profile of 
chemosensitivity, across 54 cell lines, that the moderation 
model attempts to predict. This design is analogous to a 
clinical trial with 54 patients (cell lines) [24], each treated 
with three drugs and profiled on 125 gene expressions and 
360 miRNA expressions to identify pertinent prognostic 
biomarkers of drug chemosensitivity response. 

A. Prognostic Biomarker Discovery: miRNA Interaction 

with Gene 

For Tanespimycin, two genes: ERCC2 and SF3B1 have 
the highest correlations with the drug’s chemosensitivity. For 
example, SF3B1 positively modulates drug chemosensitivity, 
so cells with high SF3B1 expression are more sensitive to 
Tanespimycin. Applying the moderation model reveals that 
six miRNAs (miR-9, miR-126*, miR-129*, miR-138, miR-
519e*, and miR-624*) negatively moderate the relationship 
between SF3B1 expression and chemosensitivity. This 
means that at higher expression levels of SF3B1, high 
miRNA expression is associated with the cancer cells being 
less chemosensitive while low miRNA expression is 
associated with the cells being more chemosensitive. 

To illustrate how the miRNA expression moderates the 
relationship between gene expression and drug 
chemosensitivity, Fig. 6 shows a scatter plot of 
Tanespimycin chemosensitivity as a function of gene SF3B1 
expression—in general positive-sloping. But, the moderation 
model proposed by this study shows that the positive-sloping 
effect itself is dependent on the expression level of miRNA 
miR-138. Because the interaction coefficient is negative 
(βgene x miRNA = -0.422), a higher miR-138 expression dampens 
the effect exerted by SF3B1 expression on chemosensitivity. 
As such, the figure clearly shows that when the miR-138 
expression is low, the direct effect of gene SF3B1 expression 
on drug sensitivity is high (large-sloped regression line). But 
when the miR-138 expression is high, the direct effect of 
gene SF3B1 expression on drug sensitivity becomes low 
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(small-sloped regression line). In this case, because the 
interaction coefficient is significant (p-value = 0.006 < 0.05), 
miR-138 expression significantly moderates the relationship 
between SF3B1 expression and chemosensitivity. 

 

Figure 6.  Scatter Plot of Tanespimycin Chemosensitivity and SF3B1 

Expression with Regression Lines as functions of miR-138 Expressions. 

This behavior, detected by the novel model shown in Fig. 
4, suggests that there may be an underlying mechanism of 
chemoresistance to Tanespimycin, and that mechanism is 
partly associated with expression levels of the miRNAs. 

B. Evidence of Translation Control of miRNA 

 In pharmacogenomics, a basic assumption is that 
through their levels of expressions, genes that code for drug-
metabolizing enzymes, drug transporters, or drug targets can 
modulate drug response [20], and miRNAs can regulate gene 
expression by promoting mRNA degradation or inhibiting 
translation [8, 9, 20]. For HSP90 inhibitors in this study, the 
evidence points to that miRNA expression is not associated 
with mRNA degradation, at least not in a way that gene 
expressions are measured by the five platforms used by NCI. 
This is shown by the correlation values (in Table III) 
between miRNA expressions and gene expression. None of 
the correlations (R) in Table III is significant, and this lack 
of correlation means that gene expressions are not associated 
with increased or decreased levels of miRNA expressions. 
Because the correlation between miRNA and gene 
expressions is not significant but the interaction term of 
miRNA and gene expressions is, miRNAs most likely 
transmit their regulatory influence through translation 
inhibition/control (instead of mRNA degradation). 

In addition, as shown in Table III, the lack of correlation 
between the two independent variables of miRNA expression 
and gene expression means that there is very little 
multicollinearity. Thus the moderation model results shown 
in Table I are robust. In multiple regressions, it is desirable 
to incorporate independent variables that do not correlate 
much with each other because of the problem of 
multicollinearity [10]. 

TABLE III.  CORRELATION BETWEEN GENE AND MIRNA EXPRESSIONS 

 

Gene miRNA R

R

p-value

Number of 

Samples

ERCC2 miR-15b* 0.021 0.885 51

ERCC2 miR-16-2* 0.062 0.667 51

SF3B1 miR-9 0.079 0.579 52

SF3B1 miR-126* -0.064 0.652 52

SF3B1 miR-129* -0.075 0.603 51

SF3B1 miR-138 -0.252 0.071 52

SF3B1 miR-519e* -0.173 0.226 51

SF3B1 miR-624* -0.099 0.486 52

ERCC2 miR-26b -0.180 0.202 52

ERCC2 miR-30e* 0.084 0.555 52

ERCC2 miR-32 -0.248 0.076 52

ERCC2 miR-196a 0.039 0.787 50  

0.000 ≤ p ≤ 0.001

0.001 < p ≤ 0.01

0.01 < p ≤ 0.05  

C. Benefits of this Study 

There are several benefits of this study. First, these 
results, for the first time, support an important role of 
miRNAs in structurally moderating the relationship between 
gene expressions and chemosensitivity. The study explicitly 
uses an interaction term in the (moderation) model 
specification to more closely align current understanding of 
miRNA activities with the model—a novel approach that has 
not been adopted before in Systems Pharmacology based on 
a search of the PubMed publication database. Also, the 
moderation model proposed by this study yields insight into 
mechanisms by which these drugs’ chemosensitivity may be 
modulated, and the chemosensitivity (and chemoresistance) 
mechanisms implicated and described above form the basis 
of a rich set of hypotheses that can be experimentally tested.  

 Second, this study addresses criticisms of current 
miRNA research. For example, the inconsistencies in results 
of prior studies on emerging miRNA signatures may be due 
to “different specimens (frozen vs paraffin-embedded, 
micro- vs non-microdissected)” and “experimental platforms 
used (quantitative PCR vs different miRNA array or in situ 
hybridization systems)” [8, p. 116]. This study utilizes NCI-
60 cell lines that have been grown in consistent laboratory 
environments and whose expression levels were obtained 
consistently with high quality controls [19]. In addition, the 
“lack of multivariate analysis” [7, p. 1665] is addressed 
explicitly by this study’s development of moderation model 
with two interacting independent variables. 

D. Limitations 

 The results of this study are based on the NCI-60 cell 
lines grown in vitro produced by the NCI. Experiments 
based on in vitro cells have two disadvantages. First, the cell 
lines themselves may lack the cancer characteristics which 
are important to the hypothesis proposed by the model. 
Second, the conclusion is limited to those cancer cells that 
can be grown in vitro, and many cancer types cannot [5]. 

VII. CONCLUSION 

This study has proposed a novel moderation model and 

shown that for two HSP90 inhibitors, 12 miRNA expressions 

significantly moderate the relationships between genes 

ERCC2 and SF3B1 and drug chemosensitivities. There are 

areas of potential applications and future research. 
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A. Potential Applications in Clinical Setting 

Prognostic Biomarkers: A potentially important 

application of this study is that the identification of 

prognostic biomarkers (miRNA and gene expressions) can 

help oncologists decide on the choice of anticancer drugs. 

One potential utility of the significant miRNA and gene 

expressions identified in Table I is personalized medicine. 

For example, if a patient has a combination of miRNA and 

gene expressions that, after applying the moderation model, 

shows predicted chemoresistance, then alternate therapeutic 

regiment could be explored leading to higher 

chemosensitivity and beneficial response [2].  

Intervention and Drug Discovery:  miRNA and gene 

expressions identified by this study’s moderation model 

could serve as targets on which new drugs/compounds can 

be developed to specifically inhibit or enhance in order to 

increase anticancer chemosensitivity. Instead of abandoning 

a specific drug, an miRNA expression could serve as an 

interventional agent that can be manipulated to effect a 

desirable level of chemosensitivity. miRNA expression 

levels can be increased by transfecting their precursors and 

decreased by transfecting their inhibitors [4]. There is 

precedence in targeting miRNA for therapeutic purposes. For 

example, mirvirsen is an inhibitor of miR-122 and is in 

Phase II clinical trial for treating hepatitis C [6].  

B. Future Research 

This study can be expanded to examine more miRNAs 
and more compounds. For the miRNAs, the Release 20 (June 
2013) of miRBase database shows that there are 1,872 
human miRNAs (http://www.mirbase.org/cgi-
bin/mirna_summary.pl?org=hsa) in the miRNA catalog—
more than five times of the number of miRNAs examined by 
this study. One avenue of future research is to apply the 
proposed methodology and moderation model (which 
yielded new results out of 360 miRNAs in NCI-60 datasets) 
to a larger population of miRNAs. For the compounds, the 
results of this study are only applicable to HSP90 inhibitors 
(Tanespimycin and Alvespimycin), but the NCI-60 datasets 
included 20,503 compounds as of early October 2013 (many 
of which do not have known MOAs), so the same 
methodology and model can be applied to more compounds. 
In addition to identifying pertinent miRNA and gene 
expressions for specific compounds’ chemosensitivities, the 
model can serve to explore underlying mechanisms by which 
an miRNA expression influences chemosensitivity (e.g., 
translation control vs. mRNA degradation). 
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