
  

  

Abstract— Colon cancer initiating cells (CCICs) are more 
tumorigenic and metastatic than the majority of colorectal 
cancer (CRC) cells. CCICs have also been associated with stem 
cell-like properties. However, there is a lack of system-level 
understanding of what mechanisms distinguish CCICs from 
common CRC cells. We compared the transcriptomes of 
CD133+ CCICs and CD133- CRC cells from multiple sources, 
which identified a distinct metabolic signature for CD133high 
CCICs. High-resolution unbiased metabolomics was then 
performed to validate this CCIC metabolic signature. 
Specifically, levels of enzymes and metabolites involved in 
glycolysis, the citric acid (TCA) cycle, and cysteine and 
methionine metabolism are altered in CCICs. Analyses of the 
alterations further suggest an epigenetic link. This metabolic 
signature provides mechanistic insights into CCIC phenotypes 
and may serve as potential biomarkers and therapeutic targets 
for future CRC treatment. 

I. INTRODUCTION 

A rare population isolated from primary CRC tumors, 
CCICs play important roles in CRC tumorigenesis [1][2]. 
CCICs also possess certain stem cell-like traits, including 
self-renewal, differentiation, and asymmetric division[3]. 
CCICs were originally identified by the marker 
CD133[1][2][4]. Since then, they have also been associated 
with other markers such as CD44, ALDH1, and Lgr5[3][5].  

However, it has remained largely unclear whether CCICs 
isolated from different CRC tumors indeed share common 
mechanisms that account for their phenotype, or alternatively 
they are completely different cells that were categorized 
simply by their tumorigenic capacity. 

To address this question, we first analyzed 5 GEO 
microarray datasets that measured the transcriptomes of 
CD133+ versus CD133- CRC cells[6]. The transcriptome 
analysis suggested that CD133+ cells consistently regulate 
certain metabolic enzymes differentially from CD133- cells. 
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Unbiased metabolomics by high-resolution mass 
spectrometry further corroborated the metabolic signature of 
CD133+ CCICs, which involve the glycolysis, TCA cycle, 
and cysteine/methionine metabolism pathways. 

II. MATERIAL AND METHODS 

A. Microarray Data From GEO 
Five sets of microarray data from GEO were analyzed. 

These data sets include 28 FACS (Fluorescence-Activated 
Cell Sorting) sorted CD133+ vs. CD133- pairs from 3 CRC 
patient tumors and 4 CRC cell lines (Table I).  

B. Statistical Analysis 

An R-package, Bioconductor[7], was used to extract 
pre-analyzed GEO data and for post-processing. Genes that 
were significantly (p-value <0.05) up-regulated or 
down-regulated in CD133+ vs. CD133- cells were identified 
by differential analysis using t-test and fold-change analysis. 
Gene frequencies and Venn diagrams were further generated 
by the R-packages limma[8] and vennDiagram[9] to integrate 
analytical results from the 5 GEO datasets.  

C. Metabolomics Data 
 We isolated CD133+ and CD133- populations from 
patient-derived CRC lines we have previously described. 6 
samples were collected and FACS sorted using CD133 
antibodies, and their metabolites levels were detected and 
measured by a high-resolution qExactive liquid 
chromatography–mass spectrometer (LC-MS). 

TABLE I.  GEO MICROARRAY DATA ON CRCS. 

Microarray Data List 
GEO accession 

number Bio marker Cell Type Sample 
Number 

GSE11757[12] CD133 CACO-2 3 x CD133+ 
3 x CD133- 

GSE23295 CD133 SW620 2 x CD133+ 
2 x CD133- 

GSE24747 CD133 CACO-2 3 x CD133+ 
3 x CD133- 

GSE34053[13] CD133 Patient 
specimen 

3 x CD133+ 
3 x CD133- 

GSE38049 CD133 HCT116 3 x CD133+ 
3 x CD133- 

D. Pathway Analysis 
We performed pathway analyses on the CCIC-regulated 

genes identified from the GEO datasets using Gene Set 
Enrichment Analysis (GSEA)[10] and the Kyoto 
Encyclopedia of Genes Genomes (KEGG)[11]. The 
metabolomics and transcriptomics data were then integrated 
by using the KEGG Pathway Online Module.  
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III. RESULTS 

A.  Differential Transcriptional Profiling in CD133+ Cells 
Transcriptional profiling of the five CRC sets showed that 

CD133+ and CD133- cells have on average 3178 
significant-differential (P-value < 0.05) genes, of which 1628 
genes are upregulated and 1550 genes are downregulated in 
CD133+ cells (Figure 1, Table II). To compare the gene 
expression profiling of the 5 sets of microarray data from 4 
different platforms, we converted the probe IDs of each 
platform into unified Entrez format. A total of 5521 genes 
were identified as upregulated in CD133+ cells and 5527 
genes as downregulated in CD133+ cells. Based on the 
frequencies of these identified genes across the 5 data sets, 
946 genes were upregulated in more than one CRCs set and 
718 genes were downregulated in more than one CRCs set 
(darker regions in Figure 2). However, only one gene 
(CD133) was consistently upregulated in all 5 datasets, and 
no gene was consistently downregulated in all 5 datasets. 

Our differential analysis suggests that the transcriptional 
landscapes are consistently altered in CD133+ CCICs vs. 
CD133- CRC cells, and many genes are involved. However, 
CD133+ CCICs from different CRC tumor origins involve 
diverse genes, reflecting their various genetic backgrounds. 

 

TABLE II.  SUMMARY OF DIFFERENTIAL ANALYSIS 

GEO 
accession 
number 

Total 
Significant-Diff
erential Genes 

Significant- 
Differential 
Upregulated 

Genes 

Significant- 
Differential 

Downregulated 
Genes 

GSE11757 1676 861 815 
GSE23295 6935 3089 3846 
GSE24747 4011 2723 1288 
GSE34053 2230 954 1276 
GSE38049 1038 512 526 
AVERAGE 3178 1628 1550 

B. Pathway Enrichment Analysis 
To find out what pathways these genes are involved with, 

we performed GSEA and KEGG pathway analyses on the 
identified list of differential genes. Pathway analyses showed 
that the curated gene sets of METABOLIC PATHWAYS, 
PATHWAY IN CANCER, and TRANSCRIPTIONAL 
MISREGULATION IN CANCER are most highly enriched. 
KEGG identified 282 enriched pathways, among which 
metabolic pathways scored highest gene hit rates – 50 curated 
metabolic pathways involve 614 differentially regulated 
metabolic genes. The metabolic alterations in CD133+ 
CCICs are visualized in the global metabolic map shown in 
Figure 3, wherein red lines represent upregulated enzymatic 
reactions and blue lines represent downregulated reactions. 
Darker color indicates a higher frequency of the metabolic 
gene across the 5 datasets. The global analysis suggests that 
metabolic pathways are highly reprogramed in CD133+ 
CCICs.  

 

 

C. Metabolomic Profiling  
The gene and pathway enrichment analyses suggest that 

metabolic reprogramming may be a signature of CD133+ 

 

Figure 1.  Differentially regulated genes in the 5 GEO datasets. Upper 
panels: Heatmaps of microarray datasets. Each row is one gene, and 
each colum is a sample. Red and blue colors represent high and low 

expression levels respectively.  Lower panels: Volcano plots of 
differentially regulated genes calculated by p-values and fold changes, 

Each dot represents a gene. The red dots represent significantly 
upregulated genes, and the blue dots represent significantly 

downregulated genes. 

 

Figure 3.  A global metabolic map showing metabolic alterations in 
CD133+ CCICs. Nodes represent metabolites, and lines represent 
enzymatic reactions. Red color refers to significantly upregulated 

enzymetic genes, and blue color refers to significantly downregulated 
enzymetic genes. Color saturation reprents the frequency of the gene 

across GEO datasets, from 5 (darkest) to 1 (lightest).  

 

Figure 2.  Venn Diagrams of differentially regulated genes that are 
statistically significant. Each circle represents a GEO dataset. The 

number in each intersecting region represents the number of 
overlapping genes. 
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CCICs. To validate this hypothesis, we FACS sorted pure 
CD133+ and CD133- populations from patient-derived CRC 
lines we have previously published [3] and performed 
unbiased, high-resolution metabolomics to measure 
metabolite levels in triplicate samples using LC-MS. 
Differential analysis identified 54 metabolites that were 
differentially expressed in a statistically significant way 
(P-value < 0.05), among which 28 metabolites were 
upregulated in CD133+ CCICs and 26 metabolites were 
downregulated in CD133+ CCICs. The list of differential 
expressed metabolites is summarized in Table III.   

TABLE III.  LIST OF SIGNIFICANTLY-DIFFERENTIAL METABOLITES  

54 differentially expressed metabolites (p-value < 0.05) 

Upregulated Metabolites 
(28 metabolites) 

Downregulated Metabolites 
(26 metabolites) 

fructose-16-bisphosphate serine 
inosine adenine 

Phosphorylcholine betaine aldehyde 
UTP 2-keto-isovalerate 

CDP-ethanolamine sarcosine 
malate 2-hydroxygluterate 
ATP Atrolactic acid 

dGTP Phenyllactic acid 
S-methyl-5-thioadenosine hydroxyphenylpyruvate 

orotate aspartate 
uridine Pyroglutamic acid 

Maleic acid histidine 
octulose-monophosphate 

(O8P-O1P) folate 

NAD+ 2-Isopropylmalic acid 
glutathione disulfide glycolate 

4-aminobutyrate phenylpyruvate 
dimethylglycine Hydroxyisocaproic acid 

S-adenosyl-L-methionine glucono-D-lactone 
UDP-N-acetyl-glucosamine Pyridoxamine 

citrulline Ascorbic acid 
aconitate N-acetyl-glutamine 

ADP acetoacetate 
dGDP sn-glycerol-3-phosphate 

citrate-isocitrate Pyrophosphate 
betaine 6-phospho-D-glucono-15-lactone 

3-phosphoglycerate 2,3-dihydroxybenzoic acid 
alanine  

a-ketoglutarate  

D. Integrated Transcriptomic and Metabolomic Network 
Analysis 

Above transcriptomic and metabolomic analyses suggest 
that metabolic pathways are altered in CD133+ CCICs 
across different CRC backgrounds. To investigate the 
connections between CCIC transcriptome and metabolome, 
we performed integrated KEGG pathway analysis on the list 
of differential genes and metabolites. The analysis identified 
carbohydrate metabolism (glycolysis, the TCA cycle) and 
cysteine and methionine metabolism as consistently altered 
in CCICs, with highly altered enzyme and metabolite levels 
(Figures 4, 5). 

In most cells, glycolysis converts glucose into pyruvate, 
which then enters the TCA cycle. Compared to CD133- CRC 
cells, major glycolysis enzymes PGK1, BPGM, and ENO1 
are significantly downregulated in CD133+ CCICs, 
indicating suppressed upstream activities (Figure 4). 

Moreover, ACSS1 (Acyl-CoA Synthetase Short-chain family 
member 1), a mitochondrial acetyl-CoA synthetase enzyme 
that catalyzes acetate to acetyl-CoA, is significantly 
upregulated in CD133+ CCICs, which potentially convert 
more upstream acetate into acetyl-CoA. On the other hand, 
downstream reactions to catalyze acetyl-CoA into 
malonyl-CoA and acetoacetyl-CoA are suppressed, hence 
forcing the extra acetyl-CoA to enter the TCA cycle. 
Consistently, the upstream metabolites in the TCA-cycle, i.e., 
citrate, aconitate, isocitrate, and α-ketoglutarate, are highly 
accumulated in CD133+ CCICs. At the end point of the TCA 
cycle, significantly upregulated PCK1 and PCK2 form a 
positive feedback loop to further facilitate the conversion of 
oxaloacetate into acetyl-CoA to fuel the TCA cycle. It has 
been shown that reprogramming of energy metabolism is a 
hallmark of pluripotent stem cells reprogram [14][15]. Stem 
cells influence epigenetic regulation such as histone 
acetylation and histone/DNA demethylation by controlling 
intermediate metabolite substrates Acetyl-CoA and 
α-ketoglutarate [16][17]. Therefore, altered energy 
metabolism and elevated Acetyl-CoA and α-ketoglutarate 
levels may explain some of the stem cell-like phenotypes 
observed in CD133+ CCICs. 

Another consistently altered metabolic pathway is 
cysteine and methionine metabolism (Figure 5). In this 
pathway, enzyme CBS (Cystathionine-β-Synthase) combines 
homocycteine and serine to generate cystationine and 
subsequently CTH catalyzes cystationine into cysteine. Both 
CBS and CTH are significantly upregulated in CD133+ 
CCICs. Interestingly, cysteine has been reported to regulate 
neural stem cells through the CBS/H2S pathway[18]. In 
methionine metabolism, DNMT1/3L, SRM, AMD1, and 
MTAP, downstream enzymes that catalyze 
S-AdenosylMethionine (SAM), are significantly 
downregulated in CD133+ CCICs. The metabolomics data 
confirm that the downregulated enzymatic reactions lead to 
accumulation of SAM in CD133+ CCICs. Among the 
downregulated enzymes, DNMT1/3L is an important DNA 
methyltransferase that catalyzes the transfer of methyl groups 
from SAM to DNA. Therefore, altered methionine 
metabolism might impact DNA methylation in CD133+ 
CCICs.  

IV. DISCUSSION 

CD133+ CCICs from different CRC tumors are likely to 
have diverse mechanisms. However, by perform system-level 
transcriptomic and metabolomic analyses on various CRC 
sources, we identified a distinct metabolic signature of 
CD133+ CCICs that involve glycolysis, the TCA cycle, and 
cysteine/methionine metabolism. The metabolite substrates 
involved in epigenetic regulations are highly altered, 
suggesting a potential epigenetic link. RNA-seq, metabolic 
flux analysis (MFA), and functional assays are currently 
being performed to further establish such links. The 
identified metabolic signature provides insights into reported 
stem cell-like properties of CD133+ CCICs. The involved 
metabolic enzymes and metabolites may provide biomarkers 
for CRC diagnosis and prognosis. New CRC treatments may 
also target them to suppress CCICs in the tumor population to 
reduce the risk of relapse and metastasis. 
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Figure 4.  Altered carbohydrate metabolism in CCIC. Arrows 
represent metabolic flows regulated by marked metabolic enzymes. 

Metabolites are shown as nodes. Upregulated genes and metabolites are 
shown in red, downregulated genes and metabolites are shown in blue. 

 

Figure 5.  Altered cysteine and methionine metabolism in CCIC. The 
annotation is consistent with that of Figure4.  
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