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Abstract—Polyadenylation including the cleavage of 

pre-mRNA and addition of a stretch of adenosines to the 3’-end 

is an essential step of pre-mRNA processing in eukayotes. The 

known regulatory role of polyadenylation in mRNA localization, 

stability, and translation and the emerging link between poly(A) 

and disease states underline the necessary to fully characterize 

polyadenylation sites. Several artificial intelligence methods 

have been proposed for poly(A) sites recognition. However, these 

methods are suitable to small subsets of genome sequences. It is 

necessary to propose a method for genome-wide recognition of 

poly(A) sites. Recent efforts have found a lot of poly(A) related 

factors on DNA level. Here, we proposed a novel genome-wide 

poly(A) recognition method based on the Condition Random 

Field (CRF) by integrating multiple features. Compared with 

the polya_svm (the most accurate program for prediction of 

poly(A) sites till date), our method had a higher performance 

with the area under ROC curve(0.8621 versus 0.6796). The 

result suggests that our method is an effective method in genome 

wide poly(A) sites recognition. 

I. INTRODUCTION 

During the mature process of mRNA and most lncRNA, 
polyadenylation or poly(A) generated by RNA polymerase II 
is a fundamental event and plays a crucial functional role in  
RNA stability, nuclear export efficiency, and subsequent 
translation [1]. Alternation of the process can perturb cell 
growth and is associated with multiple human diseases 
including cancer [2]. Recent studies have revealed that 
alternative polyadenylation (APA) is pervasive with mRNAs 
and lncRNAs [3, 4]. Recent reports also provide unexpected 
and attractive evidence that genes often convert their 
expression toward the shorter 3’UTR isoforms that 
correspond to truncated versions of the canonical long 
isoforms in proliferating or cancer cells [2, 5]. Thus, 
identifying poly(A) sites or PAS in genome is one of the 
essential problems in understanding the mechanisms of the 
regulation process.  

Recently, the advance of experimental technology largely 
improves the accuracy of detecting the locations of poly(A) 
sites. New approaches such as Direct RNA sequencing or 
DRS, 3P-Seq, PAS-Seq, 3’READ and others are beginning to 
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be used to near-completely identify poly(A) sites[2-4, 6, 7]. 
These methods can find out the poly(A) sites in a high 
throughput and with a high accuracy, but they have several 
limitations: 1) these methods could detect the poly(A) sites of 
only one tissue in one experiment and it is expensive, for 
different tissues and different species, plenty of experiment 
are required; 2) the internal priming problem could cause false 
positives recognition and add false poly(A) sites. Thus, 
computational methods are needed for poly(A) sites 
identification  as complement. 

Plenty of efforts have been made to predict poly(A) sites 
by searching patterns around poly(A)sites in genome. Position 
weight matrix (PWM) is the most widely used model to 
represent and recognize poly(A) sites[8, 9]. However, PWM 
alone is not discriminative enough and will predict lots of 
false positives, due to the fact that the motifs are very short 
and often degenerated. Recently, various approaches have 
been proposed to reduce false positives by integrating 
information of the sequences composition, such as the k-mer 
and chemical features [10, 11]. However, these methods only 
suit to a subset of the whole genome. Recently, a lot of works 
have found plenty of polyadenylation related factors, such as 
transcription factors[12], histones markers[13], miRNA target 
sites[14, 15], and RNA binding proteins[16, 17] etc. 

In this paper, we present a novel method based on 
Conditional Random Field (CRF) to identify poly(A) sites. 
CRF was introduced to bioinformatics area recently, such as 
gene prediction[18, 19], transcription factors recognition[20], 
and presented promising results. CRF can integrate 
information from different sources and capture complex 
dependency. Therefore it is an ideal framework for poly(A) 
sites prediction. Different types of features, the Position 
Weight Matrix (PWM), miRNA Target sites position, CpG 
Island position, transcription factors, histone markers and 
RNA binding proteins have been integrated in the method. 
The system diagram of our method was shown in Figure 1. 
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Figure 1.  The flow chart of our CRF-based Poly(A) sites prediction method 
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II. MATERIALS AND METHODS 

A. Datasets 

The annotated Poly(A) sites data were directly 
downloaded from the GENCODE Project sites[21]. The 
histone information, CpG Island sites, miRNA target sites and 
ChIP-Seq data or RIP-Seq and the sequences of human 
genome (Refseq hg19) were downloaded from UCSC 
Genome Browser [22]. 

B. Generating gold-standard PAS dataset and feature matrix 

Four kinds of features,including the Position Weight 
Matrix (PWM) of 15 cis-element used in polya_svm [9], the 
distance to miRNA and to CpG Island, histone markers (8 
distinct histone modifications), and transcript factors (Pabpc1, 
Elav1, and Pol2) are used. 

To generate gold-standard dataset on the binned genome, 
the “Peak-centric” method was used [20]. First, we divided 
genome into 200nt bins. Then, we assigned bins that were 
overlapped with the centers of PASs as positive ones and other 
bins as negative ones. Similar method was employed to 
acquire a feature matrix. The PWM scores of a certain bin was 
the maximal PWM score in their corresponding range inside 
the bin. Then, for other features, the value corresponding to a 
histone or transcript factor of a certain bin was set to 1 if that 
bin overlapped with one peak and 0 otherwise. In the case of  
miRNA site and CpG Island proximity, if bins overlapped 
with 500nt upstream and downstream that region, their values 
were set to 1; otherwise, they were 0. 

C. CRF-based Poly(A) Site Annotation Tool 

Our CRF-based method has been proposed to predict 
polyadenylation sites by aggregating information from 
different sources. In this method, a genome was first divided 
into 200nt bins. Then, the conditional probability-like score of 
a given observation sequence was computed as follows 
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

where y  is the label sequence, x is the observed genomic 

sequence. 
k

f  is the k
th

 feature function and 
k

 is the 

corresponding weight. The function
x

f can be an arbitrary 

function on x . And here 'y  is any label sequence. For label 

sequence, the possible values are 0 and 1. 

D. Feature Design 

Similar to the transcription factor binding site prediction 
tool CTF [20], We designed four kinds of feature functions to 
catch patterns involved in features as well. The first type is 
PWM scoring function. The second type is indicator function, 
which examines the occurrence of a feature. The third type 
which is used to capture co-occurring features aims at the 
co-occurrence of two features. In addition, a kind of feature 

functions that captures patterns in adjacent bins is used as 
complements. 

In our method, for different types of feature functions, 
different function templates were designed. Let x  be a feature 

matrix, then 
,i j

x is the value of i
th

 feature in the j
th

 bin in the 

genome. y represents the label sequence and 
j

y is the label of 

the j
th

 bin.  I conditions is an indicator function. Its value is 1 

if and only if all conditions are true. The first kind of feature 
functions is used for PWM, and it is defined as 
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where u  indicating the label of that bin is 0 or 1. The second 

kind of functions which is used to check the occurrence of 

features is defined as 
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Where both u and v represent labels. The third type aims to 

the co-occurrence of two features and its definition is 
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where i  and 'i  corresponds to two features. At last, feature 

functions that capture patterns in adjacent bins as a 
complement for above feature functions are used, and these  
are defined as 
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where i  and 'i  corresponds to two features, and u  and v  are 

labels. 

E. Training 

To estimate the parameter vector λ , a Regularized 
Maximum Conditional Log Likelihood method are employed, 
which is defined as 
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where  Z x  is the partition function and .  is the L2 norm. 
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 The optimal weight vector λ was found by using liblbfgs 
(http://www.chokkan.org/software/liblbfgs/), an open source 
library for unconstrained minimization. 

F. Prediction 

To predict the label for a bin, the marginal probability of j
th

 
bin was estimated as 
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which is assigned as the score of each bin. Then, a threshold 
was set. The bins whose scores exceed the threshold will be 
assigned as polyadenylation sites, while the rest bins will be 
assigned as background. 

The prediction method was implemented based on the 
framework of the CTF prediction tools. 

G. Performance Evaluation 

In order to evaluate the performance of our method, 2-fold 
cross-validation was used. we randomly divided the 22 
autosomes and chromosomes X and Y into two groups. Then, 
one group was utilized as training set and the other as the test 
set. Area Under the Curve (AUC) of Receiver Operator 
Characteristic (ROC) curve was calculated to assess the 
performance.  

We defined True Positives (TPs) as positive bins that were 
predicted as PASs and False Positives (FPs) as non-PASs bins 
that were predicted as PASs. Similarly, True Negatives (TNs) 
were negative bins predicted as non-TPASs. False Negatives 
(FNs) were defined as Negative bins predicted as positives. 
Then, True Positive Rate (TPR) was defined as the fraction of 
TPs predicted by a model in all positives. The fraction of FPs 
predicted by a model in all negatives was denoted by False 
Positive Rate (FPR).  

We compared our method with polya_svm, a method 
using PWM scores of 15 cis-element as features and 
employing Support Vector Machine (SVM) as classifier, 
which is the most canonical and accurate method till date. In 
order to evaluate the two methods with the same criterion, the 
two methods are tested in the same bins.  

III. RESULTS AND DISCUSSION 

DNA functional elements contained structural patterns 
and comparable information with the sequence when 
predicting poly(A) sites. As recent studies discovered that 
histone marker H3K36me3 could be a indicator for different 
kinds of polyadenylation sites [13]. In our work, 8 distinct 
histone markers were used: H3K27me3, H3K36me3, 
H3K79me2,H3K4me1, H3K4me2, H3K4me3, H3K9me3, 
and H4K20me1. Other features were the miRNA target sites 
and CpG Island proximity for the reason that most of the 
sequence surrounding the poly(A) sites are AT rich region and 
the miRNA in 3’UTR are most frequent before the 
polyadenylation site and the heptanucleotide TATTTAT to 
increase mRNA decay potency [15]. In addition, some 
transcript factors(Pabpc1, Elav1, and Pol2) are also used for 
poly(A) site prediction. 

We got 15,478,399 bins with length of 200nt. The amount 
of bins containing PAS is 1,224,851 (about 7.91% of all the 
bins). The prediction results are shown in Figure 2. In the 
method, all features were included. because during the 
training process, unrelated features would get weights close to 
zero, thus we did not select features. Combining all features, 
the AUC value of our method is up to 0.8621.  

To further evaluate our CRF-based method, we then 
compared our method with polya_svm– a SVM-based method. 
Polya_svm is an integrated method based on SVM and it 
predicts PASs based on scores of  PWM. ROC curves of the 
two methods were shown in Figure2. Results showed that our 
method had better accuracy than polya_svm. The AUC of 
CRF was larger than AUC of SVM by 26.85% (0.8621 versus 
0.6796). Next, we also compared the true positive rate (TPR) 
of all three methods at 10% false positive rate (FPR). Our 
method had the highest TPR (0.60), which was much better 
than TPR of SVM method (0.28). To sum up, our method 
outperformed existing methods in different metrics and it is an 
effective method in genome-wide polyadenylation sites 
prediction. 
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Figure 2.   ROC curves of the polyadenylation sites prediction results based 

on Condition Random Field and Support Vector Machine methods. The X 

axis represents the False Positive Rate and the Y axis represents the True 

positive Rate. The Area Under Curve values of ROC for the CRF and SVM 

method are 0.8621 and 0.6796,respectively. 

Although our method achieved a high accuracy, there are 
still much room for improvement. For example, in our current 
method, only the locations of the peaks of histone were 
considered. Continuous feature functions could be included in 
the future and that will contain the information of  the shape 
and intensity. In addition, new features can be included in our 
method in a straightforward way due to the flexibility of CRF 
framework. We could integrate different poly(A) prediction 
methods results or decision values together as features in the 
future. For large genomes, it is necessary to accelerate the 
speed of our method and reduce the demand of RAM. 

IV. CONCLUSIONS 

In this paper, we present a novel integrative method to 
predict polyadenylation sites (PASs) by combining various 
features using conditional random field Our results showed 
that this CRF based method successfully integrated 
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information from position weight matrix (PWM), miRNA 
target sites, CpG Island, distinct histone markers and 
transcript factors together. And it improved accuracy of PAS 
prediction greatly in total. When compared with existing 
representative tools, our method achieved obvious superior 
performance. The CRF based method is an effective novel 
integrative polyadenylation sites  prediction system, and are 
with great potentials in discovering other functional elements. 
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