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Abstract— Microwave-induced thermoacoustic (TA) imaging 
combines the soft-tissue dielectric contrast of microwave 
excitation with the resolution of ultrasound for the goal of a safe, 
high resolution, and possibly portable imaging technique. 
However, the hybrid nature of this method introduces new 
image-reconstruction challenges in enabling sufficient accuracy 
and segmentation. In this paper, we propose a segmentation 
technique based on the polarity characteristic of TA signals. A 
wavelet analysis based method is proposed to identify reflection 
artifacts as well. The time-frequency feature of the signal is used 
to assist differentiating artifacts. Ex vivo verification with 
experimental data is also provided. 

I. INTRODUCTION 

A medical imaging technology capable of sufficient soft-
tissue contrast while providing a hand-held form factor has 
been a goal of biomedical engineering. Potential applications 
include identification of abnormal tissue (e.g., in widespread 
cancer screening), early and on-site detection of internal 
injuries and hemorrhages, and other ambulatory care 
situations that need immediate and on-site access. 
Microwave-induced thermoacoustic (TA) imaging [1-3] 
combines the soft-tissue contrast of microwave excitation 
with the resolution of ultrasound detection, while posing no 
ionizing radiation, and could enable a portable imaging device 
for these goals. 

In the TA technique, the target absorbs part of the energy 
of the incident electromagnetic pulse based on the specific 
microwave absorption properties, inducing an increase in 
temperature on the order of millikelvins. Due to this sudden 
thermal expansion, an acoustic stress wave in the ultrasonic 
range is generated from the internal boundaries of the target 
structure. This stress wave contains information on 
microwave absorption and the thermal and structural 
properties of the tissue. It is detected by the ultrasonic 
transducer or a transducer array. The microwave-induced TA 
technique combines the advantages of microwave and 
ultrasound imaging, namely penetration depth, contrast, and 
high resolution [1].  

After the initial capture and reconstruction of the image, 
further processing for image segmentation and artifact 
removal is the first step toward automatic analysis and 
evaluation. Accurate segmentation and detection of tissue 
boundaries is critical for clinical diagnosis and decision-

making, but it has not been completely addressed for TA 
imaging. One of the conventional segmentation approaches is 
the intensity-gradient technique [4]. Considering the bipolar 
nature of TA signal, this method cannot be readily applied. 
We propose a polarity gradient method for segmentation of 
TA imaging. 

To further suppress image artifacts (e.g., due to secondary 
reflections), we rely on the differences in the frequency 
spectrum of the artifacts compared to actual target response, 
and use the time-frequency characteristics of the image data 
to identify and remove these errors. We use the Morlet 
wavelet transform to analyze the time-frequency 
characteristics of the signal. After the elimination of noise and 
artifacts segmentation, the proposed algorithm finds the edge 
of the tissue and relative microwave absorption rate of 
different tissue materials. 

II. METHODS 

A. Operation Principle 

The generation of the TA signal follows the equation [5] 

 
2

2
2 2

1 ( , )
( ) ( , )

s

H r t
p r t

C tv t

 
   


.  

Here, p(r,t) is the stress at position r and time t, vs is the speed 
of sound, β is the thermal expansion coefficient, C is the 
specific heat capacity, and H(r,t) is the heating function, 
defined as thermal energy absorbed per unit time and unit 
mass. The term on the right-hand side of the equation is the 
time derivative of the energy deposition. The sharp slopes at 
the rising and falling edges of a square pulse lead to efficient 
stress wave generation. Consequently, the generated stress 
wave is a bipolar signal whose peak and valley correspond to 
the sequential expansion and contraction of the tissue, as 
shown in Fig. 1.  

The primary contrast in TA imaging comes from the 
differences in electromagnetic energy absorption, due to 
variations in dielectric properties. For example, higher 
effective conductivity leads to a larger absorption in the 
microwave spectrum. Unlike MRI or X-Ray imaging, the 
direct application of this technique only maps the boundaries 
between different tissue types and does not give a direct 
reconstruction of the internal composition. As a result, it is 
critical to correctly identify the boundaries, and then, it will 
be important to develop an indirect way of identifying and 
mapping tissue characteristics in between these boundaries.  

Fig. 1 shows a typical measured TA signal. It displays two 
bipolar components with opposite polarities, indicated by the 
arrows in Fig. 1(a). These two signals are from the top and 
bottom surfaces of the tissue sample, which is placed in 
mineral oil. The sample has a higher microwave absorption 
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rate, therefore, it absorbs the electromagnetic energy and 
expands in the direction of the surrounding material (oil), as 
shown in Fig. 1(b). The generated stress waves from each of 
the boundaries propagate upwards and downwards. The 
upward-propagating signals are picked up by the transducer. 
Due to polarity of transducer, a displacement in z direction 
leads to a negative voltage. Consequently the received bipolar 
signals coming from the two boundaries have opposite 
polarities. This relative phase information will be used for 
target differentiation and identification. Zero-crossings of this 
signal will be used to map the structural boundaries. 

Figure. 1. (a) An example measured TA signal. The x-axis is the time after 
the microwave excitation pulse. The y-axis is the measured signal voltage. 
The imaging sample is a piece of chicken breast with the thickness of 
approximately 11mm. The black arrows in the target indicate the expansion 
direction of the boundaries after the microwave excitation. (b) The 
displacement of the top (red) and bottom (green) boundaries after the 
application of microwave pulse.  

B. Experiment Setup 

We run an ex vivo experiment to capture the data for 
segmentation processing. A tissue sample is placed in a 
container filled with mineral oil. A signal generator produces 
a square pulse-modulated sine wave with a carrier frequency 
of 2.1 GHz. A solid-state GaN power amplifier is used to 
provide a peak power of up to 120 W. Unlike other solutions 
[1, 2], which employ kW sources, our approach focuses on a 
low power solid-state solution to enable future integration 
with a hand-held device. A waveguide couples the microwave 
pulse to the container in a non-contact manner. A matching 
network is employed for impedance matching to enhance 
power transmission efficiency. Mineral oil has a small 
microwave absorption coefficient and provides a good 
acoustic coupling between the tissue and the transducer. 
Moreover, stress waves experience little attenuation in 
mineral oil, which simplifies the characterization process. In 
the receiver path, an immersion piezoelectric transducer with 
a central frequency of 0.5 MHz is used. A low-noise amplifier 
(LNA) is employed for conditioning. A linear stage setup is 
used to perform a B-scan to acquire the image.  

We use a modified back-projection algorithm for 
reconstruction [6]. This algorithm considers the spherical 
nature of propagation for the TA signal and the effect of 
transducer beam profile. The algorithm can improve SNR, 
and is relatively fast in terms of processing. Since the 
transducer receives signals from all the directions within its 
beam width, the signal received at a specific time and 
transducer scan step is the integral of the stress waves from a 
spherical surface with the weights of transducer beam profile: 
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Here, pr(r0,t0) is the signal received by the transducer at 
position r0 at time t0, and B(r,r0) is the beam profile at position 
r, if the transducer is at position r0.  

For reconstruction, the measured signal at position r0 is 
back projected along a sphere with the weight of the beam 
profile of the transducer. The signals from different 
transducer positions are combined to form the reconstructed 
image. The TA signal will sum coherently while the noise is 
summed incoherently. As a result, the SNR improves. The 
speed of sound in tissue is approximately 1.5mm/µs, which is 
assumed constant for the back-projection algorithm. 

 

 

 

 

 

Figure. 2. The schematic diagram of the experiment setup.  

C. Polarity Gradient Method 

After image reconstruction, segmentation is an important 
step in image analysis. Considering the bipolar nature of the 
TA signal, we can detect the tissue boundaries by finding the 
zero-crossing points of the measured TA signal. In our 
proposed method, we first create a polarity map, defined as 
polarity map = sign(original image). A +1 value is assigned 
if the original image pixel is positive and -1 is assigned if it is 
negative. The TA signal has a high dynamic range, so we only 
consider its polarity by normalizing its magnitude. The 
second step is to use an edge detector on the polarity map to 
identify boundaries. In TA imaging, the polarity of the TA 
signal is related to the expansion direction of the tissue, and 
this will be used as a signature to differentiate target 
properties. For example, muscle expands in the direction of 
fat because muscle has a higher microwave absorption rate. 
This polarity, or phase information, helps classify the relative 
microwave absorption rates of adjacent tissue materials. The 
gradient of the polarity map has the same direction as the 
tissue expansion.  

However, noise and reflection artifacts also have zero-
crossing points that are identified by the edge detector. They 
need to be identified and distinguished from the real targets. 
To identify noise zero-crossing points, we run a thresholding 
function on the spatial average of the absolute values of the 
image with an averaging size of 3×3 mm. The absolute values 
are used because the signal is bipolar. Noise has a small 
average value and is filtered by the threshold. The results form 
a signal check map shown in the next section. 

D. Artifact Removal 

Generated stress waves are reflected at some boundaries, 
such as tissue boundaries, which produce additional reflection 
artifacts. These artifacts lose some high frequency 
components due to reflection, acoustic re-absorption and 
scattering [7]. Consequently they have different frequency 
spectrum shape compared to real tissue signals. This fact 
motivates us to look into the time-frequency information 
contained in the measured signal. For this purpose, we use the 
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continuous wavelet transform (CWT) as a natural 
generalization of the Fourier transform for time-frequency 
analysis [8]. CWT uses a wavelet function, instead of the 
complex exponential function of Fourier transform, as the 
kernel in the integral transform. The operation of scaling 
wavelet function resembles frequency shifting in short-time 
Fourier transform (STFT), and the corresponding pseudo-
frequency at each scale can be calculated with a known 
wavelet function. The CWT approach provides flexibility in 
terms of selecting different wavelets and scales, which makes 
it a more powerful tool for analyzing acoustic signals 
compared to STFT, which is limited by a fixed frequency 
resolution [8]. We use the Morlet wavelet because its 
waveform is similar to the impulse response of the transducer. 
The CWT coefficients are normalized to eliminate the energy 
of the signal and only the frequency spectrum shape is used 
for differentiation. The real tissue signal has larger 
components in the high frequency range in the normalized 
CWT, when compared to the artifacts, which is used as a 
signature to distinguish between the two. To increase decision 
accuracy, we segment the A-scan signal into partially 
overlapped time windows called frames, and decide whether 
each frame contains a real tissue signal or not. In order to 
reduce variance, the average value of the wavelet coefficients 
in the frame over time is used to make the decision. We use a 
frame length of 2µs and a 50% overlap between frames, as a 
trade-off between temporal resolution and variance reduction. 
After the wavelet analysis step, the results are combined to 
form a 2D tissue check map. The final segmentation results 
combine the signal check map and tissue check map to 
remove the noise and artifact contributions. 

III. RESULTS AND DISCUSSION 

Fig. 3(a) shows the imaging sample used in the 
experiment. It is a layered muscle-fat-muscle sandwich 
structure. Fig. 3(b) shows the 2D reconstructed image using 
the modified back-projection algorithm. Artifacts are 
observable at a depth greater than 90mm. These artifacts are 
due to reflections of TA signals at the tissue's internal 
boundaries. We calculate the polarity map gradient using an 
edge detector. In Fig. 3(c) we show the gradient of the polarity 
image. The different colors correspond to different expansion 
direction. However, some edges are due to noise rather than 
signal. We check each pixel and decide whether it is signal or 
noise using the proposed averaging method in section II. The 
resulting signal check map is shown in Fig. 3(d). The white 
sections represent regions containing signal, and the black 
sections contain only noise. Combining Fig. 3(c) and (d), we 
can find the zero crossing points of the original image and 
eliminate the contributions of the noise. The results from this 
part are shown in Fig. 3(e).  

Some segmentation results are due to the reflection 
artifacts and cannot be filtered by the signal check map in Fig. 
3(d). In order to suppress these artifacts, for each A-scan 
signal, we perform a CWT using a Morlet wavelet. The 
Morlet wavelet transform of the signal in Fig. 4(a) is shown 
in Fig. 4(b). The signal in Fig. 4(a) is measured above the 
center of the imaging sample. We normalize CWT results by 
dividing the maximum value of CWT at each time step. The 
normalized CWT results are shown in Fig. 4(c).  

Figure. 3. (a) The muscle-fat-muscle sample used in the experiment. (b) The 
reconstructed image using the modified back-projection algorithm. (c) The 
gradient of polarity map. The colorbar shows the angle of the direction in 
degree. (d) The signal check map, which determines whether the region has 
signal. (e) Filtered boundaries with direction of the gradient. This step 
combines the outcomes of (c) and (d).  

Figure. 4. (a) The measured A-scan signal. (b) CWT of A-scan signal. (c) The 
normalized CWT. The CWT results are shown in pseudo-frequency. 
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We divide the A-scan signal into frames with a 2 µs time 
window. For each frame, we take the wavelet coefficients and 
calculate the average over time, as shown in Fig. 5(a) for a 
particular frame. The resulting signal is an averaged wavelet 
coefficient of that frame. This mean normalized spectrum 
captures the spectral shape information of each frame, and we 
use this as a criterion to differentiate the TA signal from the 
artifacts. In Fig. 5(b), the plot shows that the tissue TA signal 
has a peak between the pseudo-frequencies 0.2MHz and 
0.3MHz, which is larger than the artifact signal's peak. This 
difference is used to distinguish real tissue signal from artifact 
signals. By setting an appropriate threshold, we can identify 
and differentiate imaging artifacts. Fig. 5(c) shows a 2D plot 
of mean-normalized spectrum of the measured A-scan signal 
in Fig. 4(a). The white box shows the region of interest for 
real tissue signals.  

Figure. 5. (a) The wavelet coefficients are averaged over the time to obtain 
mean normalized spectrum. (b) The comparison of mean normalized 
spectrum between real tissue signal and artifact. (c) The mean normalized 
spectrum vs. frame. The white box shows the signature of real tissue signal.  

The tissue check map after the wavelet analysis is shown 
in Fig. 6(a). The white regions indicate that the pixel is a tissue 
signal and the black regions are noise and artifacts. Fig. 6(b) 
shows the final segmentation results, which combines Fig. 6(a) 
and Fig. 3(e) results. Fig. 6(c) shows the final segmentation 
image. We can see that the boundaries of the muscle and fat 
parts are successfully found. In general, the cold colors show 
that the expansion direction is upward and warm color shows 
that the expansion direction is downward. From this 
information, we can see that the segmentation result between 
63–70mm and 80–90mm have more microwave absorption 
than the surroundings. The “H” indicates the relative high 
microwave absorption region and “L” indicates the relative 
low microwave absorption region. These results are in 
agreement with the real imaging sample. Our experiment uses 
a B-scan with single-element transducers, so the vertical 
boundaries are not shown or detected.  

IV. CONCLUSION 

In this paper, we propose a segmentation method for 
microwave-induced TA imaging. This method utilizes the 
bipolar nature of the TA signal. Additionally, a wavelet-based 
method for artifacts identification and removal is proposed. 

This method is verified by ex vivo experiment data, and the 
results are consistent with the real imaging sample. Future 
work includes the application of these techniques to more 
complex tissue structures.  

Figure. 6. (a) Tissue check map using wavelet analysis. (b) The final 
segmentation results which takes the wavelet analysis results into 
consideration. (c) The final segmentation image showing the actual 
boundaries. It also shows the expansion direction of the boundaries. 
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