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Abstract— Automatic segmentation of three-dimensional mi-
crovascular structures is needed for quantifying morphological
changes to blood vessels during development, disease and treat-
ment processes. Single focus two-dimensional epifluorescent
imagery lead to unsatisfactory segmentations due to multiple
out of focus vessel regions that have blurred edge structures
and lack of detail. Additional segmentation challenges include
varying contrast levels due to diffusivity of the lectin stain,
leakage out of vessels and fine morphological vessel structure.
We propose an approach for vessel segmentation that combines
multi-focus image fusion with robust adaptive filtering. The
robust adaptive filtering scheme handles noise without destroy-
ing small structures, while multi-focus image fusion consider-
ably improves segmentation quality by deblurring out-of-focus
regions through incorporating 3D structure information from
multiple focus steps. Experiments using epifluorescence images
of mice dura mater show an average of 30.4% improvement
compared to single focus microvasculature segmentation.

I. INTRODUCTION

Automated vessel extraction and quantification is an im-
portant processing step in characterizing vessel networks,
angiogenis and normal vs. diseased tissue behavior. Many
techniques for vessel extraction have been proposed in lit-
erature [1]-[5] mostly for neuro, cardiovascular or retinal
imaging. The application of interest in this paper is vascular
network reconstruction using epifluorescence imagery [6],
[7]. In epifluorescence, imaging tissue is stained using
a lectin SBA and imaged using fluorescence microscopy.
Vascular segmentation in epifluorescence microscopy poses
unique challenges such as varying contrast levels due to
diffusivity of lectin stain, spatially varying focus, high back-
ground signal due to leakage of the stain from vessels, and
high variance in vessel intensity. In these type of images,
traditional global thresholding schemes [8] fail to pick up
salient structures effectively.

Active contour models [7], [9]-[12] relying on edge or
region based indicators may fail to capture all the salient
structures. Another major challenge is vascular structures
at variable depths of focus. Spatially varying out-of-focus
blur not only hinders accurate segmentation but also re-
sults in quantification errors. Fusing various focus (z-stack)
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images thus becomes an efficient alternative to improve
the segmentation of 3-D vessel structures without requiring
volumetric data collection and computationally intensive 3-
D reconstruction. Several multifocal image fusion techniques
have been studied in the past such as pixel-level analysis [13],
and sparse representation for wavelet based methods [14].

In this paper we propose a system that couples a ro-
bust adaptive filtering based segmentation with a multi-
focus image fusion module. The robust adaptive filtering
scheme handles noise without destroying small structures,
and the multi focal image fusion considerably improves
the overall segmentation quality by integrating information
from multiple images. Denoising schemes are not able to
resolve detailed image structures present in the blurred out-
of-focus regions. We propose incorporating a multi-focus
image fusion stage prior to denoising and show that this is
key step in increasing true detections of vessel regions while
minimizing false positives. We use a Hessian-based image
fusion approach to combine information from multi-focus
images. There are various methods based on the Hessian
matrix such as [3], [15], [16]. In order to improve our current
vessel segmentation scheme we fuse the images combining
different areas of focus and in this article we assess the
effectiveness of this step.

The major contributions of our work are: (a) a multi-
scale Hessian matrix based scale selection and composite
multi-focus image generation, (b) an adaptive robust fil-
tering scheme that handles noise without destroying small
structures, and (c) experimental vessel segmentation results
showing the effectiveness of the multifocus image fusion
approach. The rest of the paper is organized as follows. Sec-
tion II describes the fusion method for multifocus composite
image generation. Section III describes our robust smooth-
ing based segmentation. Section IV provides experimental
results.

II. MULTIFOCUS IMAGE FUSION USING MULTISCALE
HESSIAN

There are various methods to fuse images such as naive
pixel level averaging of the different focus images. Although
image averaging is effective at reducing independent Gaus-
sian noise, it leads to reduced contrast and increased blurring
overall. As shown in [17] blur can adversely affect the
detection rate of curvilinear features. Since the derivatives
do not respond as strongly in areas that are out of focus, we
can identify regions that are in-focus within each image by
maximizing the second order derivative response to create a
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Fig. 1. Images for mouse 1 (022106ERbKOOVX(28)) showing variable
regions of focus for the same vessel (a)-(d) and the fused result (e). Colored
pixels in (f) indicates the source images 1 to 4 after multi-focus fusion in
blue, cyan, yellow and red respectively.

fused multi-focus pixel map. The Hessian matrix of second-
order image derivatives for gray level image [ is defined

as:
zy tyy
Let A1, A2 be the eigenvalues and ey, e5 the corresponding
eigenvectors of the Hessian matrix with |A;| > |A2|. Scale
space images are computed by convolving the image with
2D isotropic Gaussians with varying standard deviations,
1 —(2* +9%)

ez ( 207 )

where o is the standard deviation or scale of the Gaussian.
Let I, denote a single focus image with p € {1,2,..., N},
the set of N single focus images. We compute the Hessian
matrix (1) over a range of suitable scales for each single
focus image I,. We define a multi-scale matrix norm that
is based on the eigenvalues of the Hessian at the maximum
response scale:

By, 9)l|r = /Ny, 5,0%) + (2, 5,0%) B)

where 0* = argmax_ |\1p(z,y,0)|. Note that we normalize
the Hessian matrix by the squared scale factor o before
computing the eigenvalues and the Frobenius matrix norm
in (3). The final focus selection map is given by,

(D

G(z,y,0) =

2

p*(z,y) = argmax }IIH(w,yvp)HF “4)

pe{1,2,...,N

where p*(z, y) is the index of the best focus source image at
pixel location (x,y). The proposed fusion algorithm consists
of the following steps:

Step 1: Compute multi-scale Hessian values for each single
focus image I,, p={1,...,N}.

Step 2: Estimate max scale response at each pixel in Ip,.
Step 3: Compute multi-scale Frobenius norm as in Eqn. (3).
Step 4: Compute focus selection image map as in Eqn. (4).
Step 5: Generate composite image [. using:

Ic(xa y) = dp*(z,y) (l‘, y) (5

Figure | shows an example of the multi-focus fusion
approach from a set of four single focus images. Figure 1(a)-
(d) shows single focus images where the focus shifts from
bottom left to top right in a diagonal fashion. Figure 1(e)
shows the final fused image using our proposed multi-scale
Hessian approach. In Figure 1(f) we show the focus selection
map given in Eqn. (4) plotted as a colormap.

III. VASCULAR SEGMENTATION USING ROBUST
SMOOTHING

A robust image smoothing operator is applied to improve
the segmentation of vascular regions from composite in-focus
images produced by the multi-focus image fusion module
described in Section II. Robust smoothing reduces noise and
enhances object boundaries [18], [19]. The module consists
of four main steps: 1) background estimation and removal
using morphological filtering, 2) robust image filtering with
convex optimization, 3) adaptive thresholding on filtered
image to generate a binary vascular mask, 4) post-processing
using morphological operations to remove spurious detec-
tions and to generate the final vasculature network. Robust
image filtering based segmentation is briefly described.

Let Q@ C R? be the rectangular image domain, and the
input image I : @ — R with I(x) represents the value at
a pixel x := (z,y) € . In a robust statistics framework
finding a best fit of a smooth image u from a given noisy
input image I can be posed as a minimization problem [18],

min{ Y Y w(x - y)p((x) ~ u(x),0) (©)

xEQ yENK

with a robust estimator function p, we use the Tukey’s
biweight robust function due its strong edge preserving prop-
erty. Here Ny represents the neighborhood of pixel of x, w
is a spatial weighting function (e.g. Gaussian kernel (2)) and
o is a scale (variance) parameter. To solve the minimization
problem (6) we use the dilation convex approximation [20]
of the Tukey function,

TEA-[1-(€0)P) ] <
p1(6,9) {1/3 otherwise. @
We use an iterative reweighted method to solve (6),
oot Do S VA I

Y D oxen, W(x —y)e(I(x) —ui(y))
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Image ID RIS RIM Improvement (%)
WT-02 0.3902 0.5110 30.9
WT-03 0.3550 0.7916 122.9
WT-06 0.4868 | 0.3677 (0.6363) -24.4 (30.7)
WT-07 0.2913 0.4992 713
WT-08 0.3477 0.5512 58.5
WT-09 0.3582 0.3682 02.7
WT-10 0.4144 0.4972 19.9
KO-01 0.7922 0.8449 06.6
KO-04 0.8138 0.8424 03.5
KO-06 0.7570 0.8497 12.2

TABLE I

DSC VALUES FOR 7 WILD TYPE (022006-ERBWT-OVX(28)) AND 3
KNOCK OUT MICE (022006-ERBKO-OVX(28)) COMPARING BEST
SINGLE FOCUS (RIS) AND MULTI-FOCUS (RIM) SEGMENTATIONS. THE
VALUES SHOWN FOR RIS DSC ARE THE MAXIMUM AND THE
IMPROVEMENT IS COMPUTED BETWEEN THE MEAN RIS DSC AND RIM
DSC.

where c(§) = p.(§)/€ and t represent the number of
iterations. This process results in enhanced smooth image
where edges are preserved. Adaptive thresholding using
the local mean and variance values [21] is applied to the
enhanced smooth multi-focus fused images to produce a
binary vascular mask.

IV. EXPERIMENTAL RESULTS

For our experiments we have compared single focus ver-
sus multifocus segmentation results using robust smoothing
based segmentation in both cases. The two methods are
referred to as RIS and RIM for fluorescence intensity-
based Robust Image segmentation using Single focus im-
ages (RIS), and Multi-focus (RIM) images respectively. The
metric used for validation is the Dice Similarity Coefficient,
DSC(P,Q) = 2(|IP nQ|)/(|P| + |Q|), where P and Q
are automatically and manually segmented microvasculature
regions and |-| denotes the total number of pixels. DSC €
[0,1.0] with zero being no overlap and one being perfect
overlap. We have manually segmented 10 epifluorescent
microvasculature images to be used as ground truth vessel
segmentation masks for evaluation.

Our results show that fusing multi-focus images on an
average always resulted in better segmentations. As can
be seen from Table I, the DSC overlap measure for seg-
mentations using multi-focus (RIM) images shows marked
improvement over any of the individual single focus image
based segmentations (RIS). For RIS, we have reported the
maximum Dice coefficient from a set of single focus image
based segmentations. The highest improvement is seen in
WT-07 with a 122.9% improvement in vasculature detection.
Detailed segmentation results for WT-03 are shown in Fig-
ure 2 along with ground truth mask. Figure 2(c) shows the
segmentation result obtained using RIM and Figure 2(d)-(h)
show segmentation results obtained using five single focus
RIS. As can be seen the RIM captures all the vessels which
are not obtained by individual RIS results.

Figure 3 shows an example where RIS outperformed RIM
(entry WT-06 in Table I). The single-focus RIS (Figure 3(g)-
(f)) performs better with DSC values 0.4868, 0.4706, 0.4834
respectively. These segmentation results in Table I were

() (b)

(c) (@

{
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Fig. 3. High background noise levels can reduce the performance of
RIM. (a) Fused image for WT-06, (b) Ground truth vessel mask, (c) Multi-
focus (RIM) result. (d) Multi-focus (RIM) result for £ = 2.0 (e) Single
focus image for WT-06 (best result) (f) Single-focus (RIS) best result
Segmentation masks (c,d,f) show correctly segmented pixels as white pixel
regions, red are missing regions and blue are extra regions compared to the
ground truth segmentation. Better viewed in color and online.

obtained using a single adaptive thresholding parameter k =
1.5 for both single and multi-focus images. Using separate
optimized threshold value (k = 2.0) for multi-focus images
improves their result as shown in parenthesis in Table I and
Figure 3(d). Parameter set should be analyzed and optimized
for single and multi-focus images separately since they have
different image and noise characteristics.

V. CONCLUSIONS

Segmentation of complex three-dimensional microvascular
structures is hampered by using only single focus epifluores-
cence images. Significant improvement in the accuracy of the
vessel segmentation can be achieved by fusing multi-focus
images coupled with robust adaptive filtering. Experimental
results on high resolution epifluorescence of mice dura mater
images showed an average of 30.4% improvement compared
to single focus segmentations. Deblurring and denoising
individual single focus images prior to fusion is expected to
further improve performance. The proposed automatic seg-
mentation and quantitative vessel morphology measurement
system will be used to characterize ovary excised versus
normal intact cases in different animal models. This will
help in studying systemic influence of hormone therapy on
angiogenesis. Further studies are being planned to determine
if these microvascular morphological changes can be used to
characterize disease progression and response to treatment.
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