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Abstract— Computational studies of aortic hemodynamics 

require accurate and reproducible segmentation of the aortic 

tree from whole body, contrast enhanced CT images. Three 

methods were vetted for segmentation. A semi-automated 

approach that utilizes denoising, the extended maxima 

transform, and a minimal amount of manual segmentation was 

adopted. 

I. INTRODUCTION 

Hemodynamics in the ascending and 
descending aorta can be altered by patient-specific 
geometries and inflow rates [1]. In order to further 
understand the hemodynamics incident to aortic 
dissection, as well as the effects of stent graft 
placement upon these hemodynamics, 
computational fluid dynamics studies have recently 
been carried out on 3D virtual models of clinical 
cases acquired from high resolution CT scans 
[2,3]. Accurate and timely segmentation of the 
main arterial tree is required to facilitate such 
studies. 

Threshold-based methods of image 
segmentation are challenged by intensity gradients 
within the image volume. Edge detection methods 
are challenged by poor contrast in the image. CT 
scans of aortic dissections may suffer from both. 
Due to velocity gradients resulting from dissection, 
intensity gradients often exist along the 
longitudinal axis of the aortic tree. Furthermore, 
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dissimilar gradients may exist in the different 
layers of the dissection. 

Figure 1 illustrates this issue. The figure shows 
two images taken from a single CT scan of an 
aortic tree with a dissection. The two images are 
windowed identically, however, there is much 
greater contrast between the two layers of the 
dissection in one of the two images. In addition, 
the signal intensity level observed in the aorta is 
not consistent in the two images. This is 
particularly noticeable in the layer of the dissection 
that appears on the right of panel B. This layer 
corresponds to the smaller layer seen on the bottom 
of panel A. 

 
Figure 1.  Two images from a single descending aorta with a dissection; 
windowing is identical in both images. One slice slice is located just distal 

the aortic arch (A). The other is located just proximal the aortic bifurcation 
(B). 

In this paper, a semi-automated methodology is 
set forth for segmentation of the aortic tree for 
computational fluid dynamics studies of aortic 
dissection. The method increases the reliability of 
segmentation as compared to threshold-based 
methods. It also increases throughput of 
segmentation as compared to a manual approach. 

II. METHODS 

A. CT Image Acquisition 

All CT Images were acquired on a Toshiba 
whole body CT scanner following contrast 
administration with FOV = 512 x 512 x 857 and 
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res = 0.866 x 0.866 x 0.801. In total, 27 datasets 
were acquired. 

B. Threshold-based Segmentation Approach 

CT images were first cropped roughly in imagej 
to include the region immediately surrounding the 
aortic tree [4]. The cropped images were then 
windowed to highlight the aortic tree. These initial 
steps were carried out for all three segmentation 
approaches; a resultant image is illustrated in 
Figure 2. The image volume was then visualized in 
Paraview [5]. A thresholded contour was applied to 
the volume. The threshold level was manually 
optimized in order to segment the aortic tree from 
the surrounding tissue. A connectivity filter was 
applied to the resultant isosurface and the 
estimation of the aortic tree was extracted.  

 
Figure 2.  A single image from the CT dataset after a rough cropping and 

windowing. The ascending aorta is indicated with a red arrow and the 
descending aorta is indicated with a blue arrow. 

C. Edge Detection Segmentation Approach 

The cropped and windowed dataset was loaded 
into Matlab [6]. Next, the Sobel method was used 
for edge detection on a slice-by-slice basis (Matlab 
Image Processing Toolbox). The resultant edges 
were dilated with a disk-shaped structuring 
element. A seed point was marked on the interior 
of the aorta in a single slice located near the aortic 
bifurcation in order to locate a region of interest 
outlined by the dilated edge. The centroid of the 
selected region of interest was passed as the seed 
point to the neighboring slice(s) and the process 
was iterated for all slices. The process was 
repeated with the initial seed point located in the 
ascending aorta and the two resultant data masks 
manually combined. The mask was applied to the 
data and introduced into Paraview for comparison 
with other methods. 

D. Semi-automated Segmentation Approach 

The cropped and windowed dataset was loaded 
into Matlab. Next, the image was denoised with the 

total noise variation method [7]. The resultant 
images were segmented using an extended maxima 
transform (i.e., the imextendedmax Matlab 
function) [8]. The images were then manually 
edited to separate the aortic tree from tissue falsely 
identified as belonging to the aorta. An aortic mask 
was then retrieved following the same method of 
centroid seeding described in section C. The mask 
was applied to the data and introduced into 
Paraview for comparison with other methods. 

 

III. RESULTS 

The threshold approach was found to correctly 
segment the upper portion of the descending aorta, 
but underestimated the ascending aorta and the 
lower portion of the descending aorta. The edge 
detection approach was found to correctly segment 
the ascending aorta and the upper portion of the 
descending aorta, but underestimated the lower 
portion of the descending aorta. The semi-
automated approach was found to correctly 
segment all portions of the aortic tree. 

Representative slices from each of the three 
approaches are shown in Figure 3. The two slices 
shown for each method, respectively, are matched 
and are physically located close to those shown in 
Figure 1. 

 
Figure 3.  Representative segmentation results for the threshold approach 
(A), the edge detection approach (B), and the semi-automated approach (C). 

In each panel, the slice displayed on top is located just distal the aortic arch 

and the slice  displayed on bottom is located just proximal the aortic 
bifurcation. 

IV. DISCUSSION 

Figure 3 demonstrates that the threshold 
approach (Panel A) is not able to compensate for 
the gradation in signal intensity along the 
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longitudinal axis of the aorta. The result is a fairly 
correct segmentation in the top slice, but poor 
segmentation in the bottom slice. Due to the lower 
S/N in the bottom slice, one of the two layers is 
lost and the other is poorly segmented. 

The edge detection approach (Figure 3, Panel 
B) outperforms the threshold approach. One of the 
two layers of the aorta is preserved in the bottom 
slice without error. However, the other layer is still 
lost. Presumably, this is due to the lack of contrast 
between the second, lost layer and the surrounding 
tissue. That is, the contrast between the two layers 
was greater than the contrast between the lower 
intensity layer and the surrounding tissue. 

The semi-automated approach (Figure 3, Panel 
C) segments both of the representative slices 
without loss of either layer. This approach, 
however, does include some manual segmentation. 
Figure 4 demonstrates a representative 
segmentation step. Manual segmentation of this 
nature was required for 20-25% of slices. 
However, as is illustrated in Figure 4, the 
segmentation steps were minor. They most often 
consisted of a single “stroke” per slice resulting in 
rapid and reliable segmentation. 

 
Figure 4.  This figure illustrates the manual segmentation required for a 

single slice in the semi-automated approach. The slice before manual 

segmentation is shown on the left (A). The slice after manual segmentation 
is shown on the right (B). The arrow highlights the small portion of tissue 

that was seperated from the aorta. 

Isosurfaces obtained using the semi-automated 
method are shown in Figure 5 for three 
representative aortic trees. 3D printing of 
isosurface models was used to visually evaluate the 
final segmented surface (Figure 6). 

 
Figure 5.  Isosurfaces from three representative aortic trees. 

 
Figure 6.  Aortic trees were 3D printed. 

V. CONCLUSION 

In conclusion, the semi-automated approach 

consisting of denoising, segmentation via the 

extended maxima transform, and limited manual 

segmentation was found to most accurately 

segment the aortic tree. This method has been 

adopted to support ongoing computational fluid 

dynamics studies. Comparison of the method with 

other reported methods [9] presents an additional 

interesting future direction for this work. 
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