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Abstract— In recent years many automatic methods have
been developed to help physicians diagnose brain disorders,
but the problem remains complex. In this paper we propose
a method to segment brain structures on two 3D multi-modal
MR images taken at different times (longitudinal acquisition).
A bias field correction is performed with an adaptation of the
Hidden Markov Chain (HMC) allowing us to take into account
the temporal correlation in addition to spatial neighbourhood
information. To improve the robustness of the segmentation of
the principal brain structures and to detect Multiple Sclerosis
Lesions as outliers the Trimmed Likelihood Estimator (TLE)
is used during the process. The method is validated on 3D+t
brain MR images.

I. INTRODUCTION

Magnetic Resonance Imaging (MRI) is widely used for
brain evolutive disorders diagnosis as Multiple sclerosis
(MS) or Alzheimer’s disease. The segmentation of the brain
structures and the analysis of their evolutions are crucial
steps in these diseases diagnosis. Automated methods have
been developed to help physicians (manual process is always
too much time consuming) [1]. For the special case of the
segmentation of MS lesions, more details can be found in
[2] and [3].

In this paper we propose a method for segmentation into
3 classes the brain structures (White Matter (WM), Grey
Matter (GM) and Cerebrospinal Fluid (CSF)) taking into
account their evolutions. We simultaneously segment two
3D multi-modal MR images taken at two different times
using an Hidden Markov Chain (HMC) model. The use of
the HMC model allows to take both spatial and temporal
neighbourhood information in order to introduce a spatio-
temporal regularization during the segmentation process.
This will reduce the influence of the noise in the MR images
and will take simultaneously into account time evolution.
The criteria of segmentation and the parameters of the
HMC model are automatically estimated by using the Baum-
Welch algorithm [4], highly reducing the computation time
compared to Markov Random Field. In the used data, there
are always artefacts due to MR images by themselves or due
to studied diseases (for example in MS, lesions differ from
the three looked brain structures). To reduce this artefacts and
improve the robustness, the data driven term is estimated by
using the Trimmed Likelihood Estimator method. Moreover
the methods allow to dtermine outliers from the 3 classes
model. After a post-treament, the MS lesions are segmented
using this outliers.
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The paper is organized as follows. Section II describes the
methods. In section III, results obtained on 3D brain images
are shown. The paper finishes with conclusions.

II. METHOD

A. Spatio-temporal Hidden Markov Chain

The use of the Hidden Markov Chain (HMC) model to
perform spatial regularization during the segmentation is a
well known process [5]. In [6] Benmiloud et al. propose a
Hidden Markov Chain model, which performs both temporal
and spatial regularization. This model is suitable to our
problem: the cerebral structures that we want to segment
(WM, GM, CSF) exhibit a spatial consistency over time.
HMC requires a vector in input, so the first step is to
transform two 3D images into a vector. In this goal, a 3D+t
Hilbert-Peano scan is used (Fig. 1). A different 4D HMC
model can be found in [7]. To a 3D segmentation by Markov
Random Field, this model add a temporal Markov chain in
each voxel.
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Fig. 1. 3D+t Hilbert-Peano scan.

Let us consider two random processes at time t1 and at
time t2, Xti = (Xti

n )n∈S standing for hidden processes
and Y ti = (Y ti

n )n∈S the observed ones, with i = {1, 2}
the process associated with image at time t1 and at time
t2 respectively and the finite set of N voxels on the
3D lattice S. Each Xti

n takes its value in finite set of
K = 3 classes Ω = {ωCSF , ωGM , ωWM}. Each Y ti

n takes
its value in R

m with m the number of MRI modalities
(the modalities should be T1, T2, Flair). Let us define
X = [Xt1

1 , Xt2
1 , Xt2

2 , Xt1
2 , Xt1

3 , . . . , Xt2
N−1, X

t2
N , Xt1

N ]. To
introduce a spatio-temporal regularization in the segmen-
tation process we assume that X is a Markov Chain then
P (Xn+1 = ωl|Xn = ωk, . . . , X1 = ωj) = P (Xn+1 =
ωl|Xn = ωk). Thus X will be determined by an initial
probability πk = P (Xt1

1 = ωk) and the spatial transition
matrices:

{

At1,n : at1,nkl = P (Xt1
n+1 = ωl|X

t1
n = ωk)

At2,n : at2,nkl = P (Xt2
n+1 = ωl|X

t2
n = ωk)

(1)
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and the temporal transition matrix T n with elements tnkl =
P (Xti

n = ωl|X
tī
n = ωk) (with ī = 2 (resp. 1) if i =

1 (resp. 2)). We assume homogeneity of the Markov Chain
which means that the transition matrices are independent of
the location n: a

t1,n
kl = at1kl, a

t2,n
kl = at2kl, tnkl = tkl. The

spatio-temporal Hidden Markov Chain scheme is presented
in Fig. 2.
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Fig. 2. Spatio-temporal Hidden Markov Chain.

MR images are corrupted with inhomogeneity, which
can lead misclassifications in the segmentation process. To
correct this bias field, we use the method introduced by
Van Leemput et al. [8], in which the bias field is modeled
as a linear combination

∑

l b
ti
l φl(n) of polynomial basis

functions φl(n). Inhomogeneities being multiplicative, we
take the logarithm of the observations in order to have
an additive bias. Let us define the bias corrected intensity
Ỹ

ti
n = log(Y ti

n ) −
∑

l b
ti
l φl(n). The estimation of the bias

parameters btil is done following a weighted least-squares
scheme [8].

For each image, the likelihood

f ti
k (ỹti

n ; θ
ti
k ) = p(Ỹ

ti
n = ỹti

n |X
ti
n = ωk) (2)

stands for the data driven term which is assumed to follow
multivariate normal distribution with the mean µti

k and the
covariance matrix Σ

ti
k . The estimation of these parameters

θtik = {µti
k ,Σ

ti
k }, as the estimation of prior parameters

θHMC = {π,At1 ,At2 ,T } are described in the next section.
The two segmented images are obtained by using the

MPM (Mode of Posterior Marginals) estimator [9]: x̂n =
argmax

ωk

P (Xn = ωk|Y = y), maximizing the a posteriori

probabilities in every node of the 4D chain. One of the main
advantages of HMC compared to Markov Random Field is
that the posterior probabilities can be computed exactly at
each voxel, as shown in the following. That allows to reduce
the computation time (no MCMC sampling required) and to
still keep sufficient spatial information [10].

B. Chain Parameters Estimation

The Baum-Welch algorithm [4] allows us to estimate the
posterior probabilities needed to calculate the segmentation
criterion and to update the HMC model parameters θHMC

and the noise parameters θtik . In this iterative algorithm, the
posterior probabilities estimation and the HMC model pa-
rameters and the noise parameters are estimated sequentially.
To have a fully unsupervised method, the whole parameters
are initialized using a K-means segmentation [11]. Let us
define:

V = [Xt1
1 , Xt2

1 , Xt2
2 , Xt1

2 , Xt1
3 , . . . , Xt2

N−1, X
t2
N , Xt1

N ] (3)

Z = [Ỹ
t1
1 , Ỹ

t2
1 , Ỹ

t2
2 , Ỹ

t1
2 , Ỹ

t1
3 , . . . , Ỹ

t1
N ] (4)

dnkl = P (Vn+1 = ωl|Vn = ωk) (5)

[gk(ỹ
t1
1 ), . . . , gk(ỹ

t1
N )] = [f t1

k (ỹt1
1 ), f t2

k (ỹt2
1 ), . . . , f t1

k (ỹt1
N )]

(6)
To simplify the notations, we will note zn for Zn = zn

in all the notations with data (for example, the posterior
probabilities P (Vn = ωk|Z = z) will be noted P (Vn =
ωk|z)).

1) The posterior probabilities expectation step.: The pos-
terior probabilities are estimated by scanning the chain in
both directions. First the forward probabilities is estimated :

αn(k) = P (Vn = ωk|z1, . . . zn), ∀n ∈ [1, 2N ] (7)

=

{

πkgk(z1) if n = 1
∑K

l=1 αn−1(l)d
n−1
lk gk(zn) otherwise

and then the backward probabilities

βn(k) =
P ((zn+1, . . . z2N )|Vn = ωk)

P ((zn+1, . . . z2N )|z1, . . . zn)
, ∀n ∈ [1, 2N ] (8)

=

{

1 if n = 2N
∑K

l=1 βn+1(l)d
n
klgl(zn+1) otherwise

Finally the posterior probability is calculated [9]: P (Vn =
ωk|z) = αn(k)βn(k), ∀k ∈ [1,K].

2) θHMC and θtik estimation step.: In the second step,
the HMC model parameters and the noise parameters are
estimated using the forward and the backward probabilities
in a maximum likelihood scheme. Let us define the a
posteriori joint probabilities P (Vn = ωl, Vn−1 = ωk|z) =
ξn−1(k, l) = αn−1(k)d

n−1
kl gl(zn)βn(l) and the a poste-

riori marginal probabilities P (Vn = ωk|z) = γn(k) =
αn(k)βn(k). The HMC model parameters are then esti-
mated:

πk = γ1(k) (9)

at1kl =

∑N/2−1
n=1 ξ4n+1(k, l)

∑N/2−1
n=1 γ4n+1(k)

(10)

at2kl =

∑N/2
n=1 ξ4n−1(k, l)

∑N/2
n=1 γ4n−1(k)

(11)

tkl =

∑N
n=1 ξ2n(k, l)

∑N
n=1 γ2n(k)

(12)

and the noise parameters:

µti
k =

∑

n∈ti
γn(k)zn

∑

n∈ti
γn(k)

(13)

Σ
ti
k =

∑

n∈ti
γn(k)(zn − µti

k )(zn − µti
k )

t

∑

n∈ti
γn(k)

(14)

The estimation of the noise parameters may depend on
artefacts or outliers such as introduce by Multiple Sclerosis
lesions. To reduce this influence, we estimate the parameters
in a robust way by using the Trimmed Likelihood Estimator
which is introduced in the next section.
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C. Trimmed Likelihood Estimator

In the Baum-Welch algorithm, the parameter θ =
{θtik , θHMC} is estimed by a Maximum Likelihood Estima-
tor (MLE) method. We use Trimmed Likelihood Estimator
(TLE) to estimate these parameters in a robust way, which
is define as:

Θ̂TLE = argmax
θ

h
∏

n=1

g(zν(n), θ) (15)

where ν = (ν(1), . . . , ν(2N)) is a permutation of the indices
sorting the data by adequacy with the model and h is the
trimming parameter. MLE is a special case of TLE with
h = N . The TLE method was first used in the context
of MS lesions detection by At-Ali et al. [12] and adapted
in the context of Hidden Markov Chain model [13]. In the
estimation, this estimator discards the data zn, for which the
probability P (zn, θ) is smaller than a threshold s.

P (zn, θ) =

K
∑

k=1

P (zn, Vn = ωk, θ) (16)

=

K
∑

k=1

P (Vn = ωk)P (zn, θ|Vn = ωk)

=
K
∑

k=1

P (Vn = ωk)gk(zn, θ)

For a significant number of nodes, as At1 and At2 are
in pratical almost identical and as T is almost the identity
matrix, we can consider that our Hidden Markov Chain
becomes time-homogeneous (P (Vn = ωk) is constant). Then
the probability P (zn, θ) is close in each node to an unique
Gaussian Mixture Model (GMM) distribution, given by:

hMG(zn, θ) =
K
∑

k=1

αkgk(zn, θ) (17)

≈ P (zn, θ)

We can then determine numerically the threshold s verifying:
∫

Φs

hMG(z, θ)dz = pEV T

Φs = {z|hMG(z, θ) ≥ s}

(18)

where pEV T is a probability chosen by the user. The trim-
ming parameter h is then defined by h = card(zn ∈ Φs).

The data disgarded are considered as outliers. From this
outliers, we keep as MS lesions the blob which size is
superior to 3mm3 and which distance from the edge of the
brain is enough (5 voxels). This post-treament reduce the
one-off outliers and the outliers in CSF (in the edge of the
brain), which are not MS lesions.

III. VALIDATION

To validate our spatio-temporal Hidden Markov Chain
model (STHMC), in particular the contribution of the tem-
poral dimension, we compare the MRI brain segmentation
with our method and with a classical Hidden Markov Chain

methods [13]. For the tests, we use the Brainweb Database
1 [14], which propose different phantoms of brain MRI with
different levels of noise (from 0% to 9%), different levels of
inhomogeneity (from 0% to 40%) and different lesion load.
From this phantoms the ground truth is known. To compare
the performance of the two algorithms, we use the Kappa
index (KI):

KI = 2
SEG ∩GT

SEG+GT
(19)

where GT stands for ground truth and SEG for the obtained
segmentation.

A. Tests on BrainWeb images without MS lesions

The method was first tested on T1/T2 images with 20%
inhomogeneity for different levels of noise, without lesions.
We choise an inhomogeneity of 20% corresponding to re-
alistic case nevertheless, this level have weak influence on
the results. The results are shown in Tab.I. For the spatio-
temporal method, the two different times used different levels
of noise. For this method, the mean and the variation of KI
obtained for different noise combinations are presented. With
our method, the mean Kappa index is always higher than
95% for all levels of noise and for all brain structures. Seg-
mentation of all brain structures obtained with our method
is always better than the classical HMC method. These
results confirm the interest of using a time neighbourhood
information for the brain structures segmentation. The spatio-
temporal regularization provided by our STHMC model
during the segmentation process allow a reduction of the
noise effects: results change little despite the increase of the
noise.

TABLE I

RESULTS OBTAINED ON BRAINWEB IMAGES WITHOUT MS LESIONS

WITH 20% INHOMOGENEITY FOR DIFFERENT LEVEL OF NOISE. KAPPA

INDEX (KI) IS REPORTED FOR WHITE MATTER (WM), GRAY MATTER

(GM) AND CEREBROSPINAL FLUID (CSF) FOR THE CLASSICAL HIDDEN

MARKOV CHAIN ALGORITHM (HMC) AND FOR OUR METHOD

(STHMC)

noise method CSF GM WM

1%
HMC 95.1 95.8 96.4

STHMC 96.1± 0.2 96.5± 0.6 97.0± 0.8

3%
HMC 94.9 94.1 93.7

STHMC 95.8± 0.2 95.5± 0.4 95.7± 0.5

5%
HMC 94.1 93.8 94.0

STHMC 95.6± 0.5 95.5± 1.0 95.9± 1.1

7%
HMC 93.0 92.9 93.4

STHMC 95.4± 0.8 95.3± 1.2 95.8± 1.4

9%
HMC 91.8 91.7 92.6

STHMC 95.3± 0.7 95.1± 1.2 95.5± 1.4

B. Tests on BrainWeb images with MS lesions (same lesion
load)

The second series of test were done on T1/T2 images
with MS lesions (a “mild” lesion load). The other conditions
remain the same. The results are shown in Tab. II.

1http://www.bic.mni.mcgill.ca/brainweb/
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Despite less successful results than in the case without
MS lesions, our method still provides a good segmentation
of brain structures in the presence of MS lesions, which
shows the efficiency of the Trimmed Likelihood Estimator.
Moreover our method obtain better results than the classical
HMC method for the segmentation of brain structures. For
the segmentation of MS lesions, the results are equivalent
for both methods.

TABLE II

RESULTS OBTAINED ON BRAINWEB IMAGES WITH MS LESIONS WITH

20% INHOMOGENEITY FOR DIFFERENT LEVEL OF NOISE. KAPPA INDEX

(KI) IS REPORTED FOR WHITE MATTER (WM), GRAY MATTER (GM),

CEREBROSPINAL FLUID (CSF) AND MS LESIONS (MS) FOR THE

CLASSICAL HIDDEN MARKOV CHAIN ALGORITHM (HMC) AND FOR

OUR METHOD (STHMC)

noise method CSF GM WM MS

1%
HMC 82.1 89.4 93.8 67.9

STHMC 92.34± 1.7 93.1± 0.5 94.0± 1.5 72.0

3%
HMC 83.9 88.9 92.7 77.2

STHMC 92.3± 1.5 93.1± 0.4 94.2± 1.3 78.5

5%
HMC 88.1 88.5 91.5 78.2

STHMC 92.2± 1.2 93.1± 0.3 94.4± 1.0 77.6

7%
HMC 88.4 87.4 90.2 58.0

STHMC 92.1± 0.5 92.9± 0.5 94.1± 1.2 53.5

C. Tests on BrainWeb images with MS lesions (different
lesion load)

Finally, we test our method on T1/T2 images with MS
lesions. The lesion load in the image at first time is “mild”
whereas the lesion load in the image at the second time is
“severe”. The results are show in Tab. III.

Even in a presence of temporal evolution (a change in a
lesion load), our method have better results than the classical
HMC method for the segmentation of brain structures and
equivalent results for the segmentation of MS lesions. This
validate the contribution of the temporal dimension in the
segmentation of structures.

TABLE III

RESULTS OBTAINED ON BRAINWEB IMAGES WITH MS LESIONS WITH

20% INHOMOGENEITY FOR DIFFERENT LEVEL OF NOISE AND

DIFFERENT LESION LOAD. KAPPA INDEX (KI) IS REPORTED FOR WHITE

MATTER (WM), GRAY MATTER (GM), CEREBROSPINAL FLUID (CSF)

AND MS LESIONS (MS) FOR THE CLASSICAL HIDDEN MARKOV CHAIN

ALGORITHM (HMC) AND FOR OUR METHOD (STHMC)

case method CSF GM WM MS
3% HMC 83.9 88.9 92.7 77.2

mild STHMC 88.1 91.5 94.0 82.5

3% HMC 83.8 85.5 90.1 82.0

severe STHMC 85.8 90.0 93.0 82.7

5% HMC 88.1 88.5 91.5 78.2

mild STHMC 89.7 92.3 94.5 78.0

5% HMC 84.8 85.5 89.4 82.4

severe STHMC 87.1 90.8 93.6 81.4

7% HMC 88.4 87.4 90.2 58.0

mild STHMC 90.8 92.3 93.8 54.4

7% HMC 85.0 84.8 88.4 73.1

severe STHMC 88.1 91.0 91.3 71.9

IV. CONCLUSION

In this paper, we have introduced and validated a ro-
bust method for simultaneously segmenting the tissues of
two brain MR images. We used a spatio-temporal Hidden
Markov Chain to take into account both spatial and temporal
neighbourhood information during the segmentation process
in the way to reduce the influence of the noise present in
MR images. To improve the robustness, in particular in the
present of modified brain tissues such as MS lesions, we use
Trimmed Likelihood Estimator. After a post-treament, we
use the outliers define by the TLE to determine MS lesions.
This method was tested on 3D brain MRI phantoms with
and without MS lesions.
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A. Quiles, L. Valls, L. Ramió-Torrentà, and A. Rovira, “Segmentation
of multiple sclerosis lesions in brain MRI: A review of automated
approaches,” Information Sciences, vol. 186, no. 1, pp. 164–185, 2012.

[4] L. E. Baum, T. Petrie, G. Soules, and N. Weiss, “A maximization
technique occurring in the statistical analysis of probabilistic functions
of Markov chains,” The Annals of Mathematical Statistics, vol. 41,
no. 1, pp. 164–171, 1970.

[5] N. Giordana and W. Pieczynski, “Estimation of generalized multi-
sensor hidden markov chains and unsupervised image segmentation,”
IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 19, no. 5, pp. 465–475, 1997.

[6] B. Benmiloud and W. Pieczynski, “Estimation des paramètres dans les
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