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Abstract— The segmentation of brain magnetic resonance
(MR) images into gray matter (GM), white matter (WM)
and cerebrospinal fluid (CSF) has been an intensive studied
area in the medical image analysis community. The Gaussian
mixture model (GMM) is one of the most commonly used model
to represent the intensity of different tissue types. However,
as a histogram-based model, the spatial relationship between
pixels is discarded in the GMM, making it sensitive to noise.
Herein we present a new framework which aims to incorporate
spatial information into the standard GMM, where each pixel
is assigned its individual prior by leveraging its neighborhood
information. Expectation maximization (EM) is modified to
estimate the parameters of the proposed method. The method is
validated on both synthetic and real brain MR images, showing
its effectiveness in the segmentation task.

I. INTRODUCTION

Brain disease has become one of the major threats of
human health in recent years, and it becomes critically
important to properly utilize medical examination and quan-
titative analysis for the diagnosis of brain diseases. A variety
of brain imaging technology has been developed, where
Magnetic resonance (MR) imaging has been widely used due
to its better contrast for various brain tissues [1][2]. Many
studies based on MRI scans, such as the quantitative analysis
of tissue volumes, disease and injury diagnosis and surgical
planning, requires segmentation of the imaged brain volume
into three tissue types: gray matter (GM), white matter (WM)
and cerebrospinal fluid (CSF). Consequently, segmentation
methods of brain MR images into GM, WM and CSF has
been an intensely studied research area.

In the last two decades, various approaches for brain
MR segmentation have been developed [3][4][5][6], among
which the GMM-based methods attract extensive attention.
GMM is a useful probabilistic model for describing the
image intensities of the different tissue classes, as the brain
tissue intensity distribution can be well approximately by a
Gaussian distribution and the contrast is high between differ-
ent tissue classes. Furthermore, as a well-understood model
[7], the GMM is computationally easy to implement using
the EM algorithm, and therefore it has been widely used
in the segmentation of brain MR images [4][8][9][10][11].
However, as an image histogram-based model, the spatial
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correlation between adjacent pixels is discarded in the GMM,
making it very sensitive to noise. In order to overcome
this limitation, many approaches have been proposed to
incorporate spatial information into the segmentation to
give spatially consistent results that are robust to noise. In
particular, mixture models combined with Markov random
field (MRF) has received great attention in the literature
[10][12][13][14][15], as spatial correlation could be effec-
tively captured through the MRF in a parametric way [16].
However, those models are computational expensive and it is
not straightforward how to choose the underlying parameters
for the optimal performance.

In this paper we propose a model based on standard GMM
that incorporates the spatial correlation between neighbor-
hood pixels with a simple patch metric, where a modified EM
algorithm is used to optimize the parameters. We validate the
proposed method using both synthetic and real dataset, and
it compares favorably with several existing method.

II. METHOD

A. Gaussian Mixture Model

Gaussian mixture model is a histogram probabilistic
model, image histogram reflects the frequency appears in a
certain gray value, can also be considered as an estimation of
probability density. Given a grayscale image with N pixels,
we assume it can be divided into K different regions, so it
shows K peaks in the histogram. Thus, the image can be
represented by these K statistical models. By estimating the
parameters of the GMM we can solve image segmentation
problem.

The conditional distribution of the observation xi given
the class label k is assumed to be a univariant Gaussian
distribution with parameter θk = (µk, σk),

p(xi|θk) =
1√

2πσk
exp(− (xi − µk)2

2σ2
k

) (1)

where µk and σk are the mean and the variance the distri-
bution, respectively.

In the standard GMM, a common prior distribution π for
the class label yi is assumed for all image pixels, i.e.,

p(yi = k|π) = πk (2)

with

0 ≤ πk ≤ 1 and

K∑
k=1

πk = 1 (3)
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The density function for each observation xi is given by

p(xi|θk, πk) =

K∑
k=1

p(xi|yi = k, θk)πk (4)

We note again that the prior πk here does not depend on the
pixel location.

The log-likelihood of all observations for the whole image
is given by

L1(Θ, P ) =

N∑
i=1

log p(xi|Θ, P ) (5)

=

N∑
i=1

log(

K∑
k=1

p(xi|yi = k, θk)πk)

where Θ = (θ1, θ2, . . . , θK) is the parameter of GMM and
P is the set of pixel labels yi. As can be seen from the
log-likelihood function in (5), the pixel xi considered to be
an independent sample without taking into account of the
spatial relationship, and the same weight πk is assigned for
every pixel belonging to the class k. Although the standard
GMM has a very simply form, as the pixels in the image
vary both in their locations and intensity values, thus these
insufficiencies make the standard GMM sensitive to noise.

By maximizing L1 with respect to µk and σk, we can
obtain the optimal parameters and then have the segmentation
results.

(Θ∗, P ∗) = argmaxxΘ,PL1(Θ, P ) (6)

One of the technique is EM algorithm [5][17][18], approx-
imating the optimal parameters by maximizing the log-
likelihood iteratively.

B. The Proposed Method

In our method we introduce a new model based on GMM,
which incorporates the spatial information by assigning each
pixel with different prior probabilities inferred from its
neighboring patch. Comparing to the standard GMM, the
prior distributions πij are different for each pixel dependent
on their locations.

p(yi = k|π) = πik (7)

Obviously, the proposed method takes into account of both
intensity and spatial attributes of the pixels in a plain
criterion. Furthermore, the proposed method is easier to
implement and requires fewer parameters than state-of-the-
art MRF-based models.

Given a grayscale image, we define Ni as a neighboring
patch centered at pixel i, such as a 3× 3 window. The prior
probability distribution is assigned by all the neighborhood
pixels in the same patch according to their similarity. Thus,
we assign high value wherein adjacent pixels are similar.
Specifically, with respect to the ith patch, we define a prior
similarity function that represents the weight of each patch
of pixel i for each class k

ψNik = exp(− β

2|Ni|
∑

m∈Ni

(
πmk + zmk

‖ xi − xm ‖2
)) (8)

where zmk is the posterior probability, β is the penalty
factor that controlling the similarity function. Note that, the
function ψNik only dependents on the value of prior and
posterior probability, and the main advantage of ψNik is that
it is easy to implement and incorporate the spatial correlation
amongst neighboring pixels in a simple but systematic way.

The prior distribution has different values for each pixel
corresponding to each class k in the image, given by

πik =
ψNik∑K
j=1 ψNij

(9)

The prior probability πik in (9) is computed subject to the
constraints

0 ≤ πik ≤ 1 and

K∑
k=1

πik = 1 (10)

The log-likelihood function is given by

L
(t+1)
2 (Θ, P ) =

N∑
i=1

log(

K∑
j=1

π
(t)
ij p(yi|Θ)) (11)

Comparing the log-likelihood function of the standard
GMM in (5) with the proposed method in (11), the difference
is the prior distribution π. Where in the proposed method the
prior π is different for each pixel.

The posterior probability is

z
(t)
ik =

π
(t)
ik p(yi|θk)∑K

j=1 π
(t)
ij p(yi|θj)

(12)

In order to maximize the log-likelihood function given in
(11), the well-known EM algorithm is applied. Setting the
derivative of the function in (11) with respect to µk and σk
at the (t+ 1) iteration step to zero, so then, we have

µ
(t+1)
k =

∑N
i=1 z

(t)
ik xi∑N

i=1 z
(t)
ik

(13)

σ
(t+1)
k =

∑N
i=1 z

(t)
ik (xi − µ(t+1)

k )(xi − µ(t+1)
k )T∑N

i=1 z
(t)
ik

(14)

We summarize the pipeline of the proposed method as
follows:

1) Initialize the mixture model component parameters
θk = (µk, σk), k = (1, . . . ,K) and the prior probability
πik for each pixel of each class.

2) Do until the convergence criterion is satisfied.
E-step:

Calculate the posterior probability zik by using(12);
M-step:

Update the mixture model parameters µik and σik by
using (13), (14);

Calculate the prior similarity function of each neigh-
boring patch ψNik by using (8);

Update the prior probability πik by using (9);
3) End.
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Fig. 1. JS with different patch size and different noise level for mean of
brain tissues (WM,GM,CSF).

III. EXPERIMENTS AND DISCUSSIONS

In this section we demonstrate the performance of our
algorithm on natural and brain images. The proposed method
was compared to the standard GMM, GMM-based method
[9] and the state-of-the-art MRF-based [17] method. In sec-
tion 3-A, we discuss the choice of the neighboring patch size.
Section 3-B presents segmentation results on both natural
synthetic images and brain.

According to the characteristics of the image, we use
different evaluation methods. For natural synthetic image,
performance of the proposed method was compared with
others by misclassification ratio (MCR) [13], which is the
number of misclassified pixels divided by the total number
of pixels. Two open datasets, BrainWeb and Internet brain
segmentation repository (IBSR), are used as simulated and
clinical test MR images respectively. To measure the accu-
racy ratio of the segmentation, we use the Jaccard Similarity
(JS) coefficient [19] to calculate the overlap between seg-
mentation results and ground-truth for each class. The JS
score is defined as

JS(S1, S2) =
|S1 ∩ S2|
|S1 ∪ S2|

, (15)

where S1 and S2 represent the segmentation volume and the
standard ground-truth volume, respectively.

In all experiments, we use K-means algorithm as initial-
ization, and the convergence criterion of the EM algorithm
was defined as the percentage of change in the log-likelihood
function. All methods were implemented and tested on a PC
(Matlab R2010a, Core i5, running at 2.50GHz with 4GB of
RAM).

A. Parameter Choice

In the first experiment, we discuss the impact of the size
of neighboring patch. We applied our algorithm to 10 normal
T1-weighted 3-D brain MR images selected from BrainWeb,
in which the noise ranges from 0% to 90%. The variation
of the JS for the mean of three tissues (WM, GM and CSF)
with the noise level on different neighboring patch size is
depicted in Fig.1.

As we can see from Fig.1, with the increase of noise and
the patch size, the segmentation results get worse. This is

Fig. 2. Synthetic image (128×128, image resolution). First row,
original image and corrupted original image with Gaussian noise (0
mean, 0.05 variance). Second row, from left to right, standard GMM
method(MCR=54.88%), GMM-based method (MCR=3.26%), MRF-based
method (MCR=1.45%), proposed method (MCR=0.96%).

Fig. 3. Illustration of three slices extracted from a simulated T1-weighted
ME study. From left to right: original image, ground truth, standard GMM
method, GMM-based method, MRF-based method, proposed method.

because an overly-smoothed segmentation is attained when
a big patch size used.

The best results are attained using a 3 × 3 patch. In all
our experiments, we used a 3× 3 neighboring patch Ni for
brain images, for natural images, we increase it to 5×5. The
parameter β is empirically set to 10 in our experiments.

B. Image Experiments

1) Synthetic Image: In this section, a four-class synthetic
image (128×128, shown in Fig.2) is used to compare the
performance. The noisy image in Fig.2 is obtained by
corrupting the original image with additive Gaussian noise
(0 mean, 0.05 variance). As can be easily seen, the proposed

TABLE I
JS OF EACH SEGMENTATION ALGORITHM

method WM GM
standard GMM 0.6287 0.6888

GMM-based 0.8854 0.8501
MRF-based 0.8735 0.8635

proposed method 0.9060 0.8919
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Fig. 4. Segmentation of a clinical MR image. (a) The original image. (b)
The image of skull-stripping. (c) Ground truth. (d) The segmentation result
of GMM method. (e) The segmentation result of GMM-based method. (f)
The segmentation result of MRF-based method. (g) The segmentation result
of proposed method

method outperforms other method with a lower MCR. The
result demonstrates that our algorithm has a higher degree
of robustness with respect to the high level of noise.

2) Brain Simulated Data: We evaluate the aforementioned
segmentation algorithms on T1-weighted simulated brain
MR image from BrainWeb dataset. The segmentation results
obtained by applying these algorithms on MR image with
1mm cubic voxels and 5% noise, were shown in Fig.3.
The result shows that the proposed method can preserve the
details of the image. Although there are still some errors in
our segmentation result, on the whole, the proposed method
is superior than other methods, especially for small texture
and complex topology.

3) Real Brain Data: For real brain MR image, we applied
our algorithm to normal T1-weighted 3-D brain MR image
selected from the IBSR. The resolution of the experimental
image is 1×1×3 mm, where the high resolution corresponds
to coronal slices. Fig.4 shows the segmentation results of our
algorithm with aforementioned algorithms and ground truth.
The segmentation accuracy was measured by JS of GM and
WM, and was compared in Table.1. It demonstrates again
that our algorithm outperforms other methods in terms of
segmentation accuracy.

IV. CONCLUSION
In this paper a novel extension of GMM for brain MR

image segmentation is proposed, where correlation between
neighboring pixels is incorporated into the standard GMM in
a simple and systematic way. We validate our method on both
simulated and real images. The result shows that our method
compares favorably with several existing methods, producing
accurate and robust segmentation results in presence of noise.
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