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Abstract—Hippocampus segmentation is a key step in the 

evaluation of mesial Temporal Lobe Epilepsy (mTLE) by MR 

images. Several automated segmentation methods have been 

introduced for medical image segmentation. Because of 

multiple edges, missing boundaries, and shape changing along 

its longitudinal axis, manual outlining still remains the bench-

mark for hippocampus segmentation, which however, is 

impractical for large datasets due to time constraints. In this 

study, four automatic methods, namely FreeSurfer, Hammer, 

Automatic Brain Structure Segmentation (ABSS), and 

LocalInfo segmentation, are evaluated to find the most accurate 

and applicable method that resembles the bench-mark of 

hippocampus. Results from these four methods are compared 

against those obtained using manual segmentation for T1-

weighted images of 157 symptomatic mTLE patients. For 

performance evaluation of automatic segmentation, Dice 

coefficient, Hausdorff distance, Precision, and Root Mean 

Square (RMS) distance are extracted and compared. Among 

these four automated methods, ABSS generates the most 

accurate results and the reproducibility is more similar to 

expert manual outlining by statistical validation. By 

considering p-value<0.05, the results of performance 

measurement for ABSS reveal that, Dice is 4%, 13%, and 17% 

higher, Hausdorff is 23%, 87%, and 70% lower, precision is 

5%, -5%, and 12% higher, and RMS is 19%, 62%, and 65% 

lower compared to LocalInfo, FreeSurfer, and Hammer, 

respectively.  
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I. INTRODUCTION 

Hippocampus is one of the most significant structures for 

epilepsy diagnosis and treatment. Mesial Temporal Lobe 
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Epilepsy (mTLE) is a group of disorders in which patients 

suffer from recurrent epileptic seizures arising in one or both 

temporal lobes of the brain. The last resort for long-term 

seizure freedom for drug-resistant mTLE patients is surgical 

resection of the epileptogenic hippocampus. 

Pathoanatomical and delineate functional changes of 

hippocampus in mTLE can be evaluated in segmented 

hippocampus from Magnetic Resonance Imaging (MRI), 

which is expected to result in a successful surgical outcome. 

Hippocampus is characterized by multiple edges and missing 

boundaries. Moreover, the size and shape of hippocampus 

change along its longitudinal axis. These characteristics 

make the automatic segmentation an extremely challenging 

task. In addition, both inter-rater and intra-rater variabilities 

are prone to manual segmentation, that are absent in 

automatic methods. Yet, manual segmentation of the 

hippocampus is the current gold standard assuming proper 

reproducibility, although it needs trained experts in 

neuroanatomy and is a time-consuming task requiring 

multiple hours per subject.  

Automatic hippocampus segmentation methods can be 

categorized to atlas-base methods, energy-minimizing 

models, information-base algorithms, pattern-recognition 

models, and various combinations of them. A segmentation 

based on atlas registration and minimization of an energy 

function with intensity and prior terms is presented in [1]. 

Aljabar et al. [2] present a method for multi-atlas 

segmentation and selection. The effectiveness of their atlas 

selection is shown by Dice coefficient, and some of the most 

applicable automatic methods for hippocampus 

segmentation are compared using statistical validation 

methods. 

FreeSurfer [3] is a software package for automatic 

analysis of brain structures and is a subcortical atlas-based 

segmentation method. Volumetric segmentation, inter-

subject alignment, segmentation of hippocampal subfields, 

white matter fascicles segmentation, construction of surface 

models of cerebral cortex, and some other brain analysis are 

included in this tool. Nonlinear template matching is used in 

this tool for the segmentation of brain structures like 

hippocampus. This software is freely available and open 

source. 

LocalInfo is an automatic segmentation and lateralization 

algorithm for hippocampus [4]. In this method, right and left 

hippocampi are segmented using a local information-based 

multiple atlas method (LocalInfo). Skull stripping, 3-label 

fuzzy classification and 10-label fuzzy classification, tissue-
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type information extraction and optimization of the shape 

parameters are the steps of segmentation used in this 

method. The steps for LocalInfo extraction are Non-rigid 

registration of MR images with atlases, transformation to the 

lobe label maps, finding the most similar atlas label maps, 

affine registration, Principal Component Analysis (PCA) for 

extraction of principal shapes and mean shapes, respectively.  

Different energy-minimizing models guided by internal-

shape forces and external-image forces such as discrete 

contour models, classic snakes, and deformable contour 

models are used for the automatic segmentation of brain 

structures [5]. A modified deformable model [6-8] can be 

used in medical image segmentation. Hammer [9] is an 

elastic registration method for medical magnetic resonance 

images of the brain. This method minimizes the energy 

function for deformable registration and segments the brain 

structures in an atlas-based approach. A hierarchical 

procedure for optimization of energy function is used in 

Hammer and a set of features is applied to derive volumetric 

features. Moreover, the concept of an attribute vector is used 

to characterize the brain structures in the vicinity of each 

voxel. Finally, Geometric Moment Invariants (GMIs) are 

used for representing the geometric structure of the 

underlying anatomy. This method includes a morphometric 

analysis for segmentation of high-resolution images. 

Pattern-recognition techniques are used for segmentation 

tasks. The Automatic Brain Structure Segmentation (ABSS) 

method is an algorithm based on Artificial Neural Networks 

(ANNs) [10]. Shape and signed-distance function of the 

desired structures are represented in different scales using 

GMIs and ANNs. For each scale, the GMIs as well as voxel 

intensities and coordinates are used as input parameters, 

whereas the signed-distance function is considered as output. 

Finally, ANN outputs of different stages are combined to 

classify the image voxel in two classes of inside and outside 

of the structure by another ANN.  

In this study, Dice similarity coefficient, Hausdorff 

distance, Precision, and Root Mean Square (RMS) distance 

are used as metrics to evaluate the performance of the 

automatic segmentation methods in comparison with the 

manual segmentation results. The rest of the paper is 

organized as follows. In Section II, the material and methods 

including subjects and imaging protocol, manual and 

automatic segmentation, and performance measures are 

explained. In Section III the results of the statistical 

validation of the four evaluated methods are presented. 

Finally, the paper is concluded in Section IV. 

II. MATERIAL AND METHODS 

A. Subjects and Imaging Protocol 

An archive review of mTLE patients treated between 

June 1993 and June 2014 at Henry Ford Hospital, Detroit, 

MI was used in this study. One hundred fifty-seven 

symptomatic patients affected by mTLE were selected for 

this study. 

 

Fig 1. Surface rendering of the cortex surface (left) and segmented 

hippocampus (right) of T1-weighted MR images of a 52-year-old female 
who has been affected by mTLE for 19 years. The hippocampus 

segmentation was performed using the Automatic Brain Structure 

Segmentation (ABSS) method. 

Preoperative MRI images obtained using a 1.5T or a 3.0T 

MRI system (Signa, GE, Milwaukee, USA) included coronal 

T1-weighted (using inversion recovery spoiled gradient 

echo, IRSPGR protocol) and coronal T2-weighted (using 

fluid attenuated inversion recovery, FLAIR protocol) 

images. On 1.5T MRI, T1-weighted imaging parameters 

were: TR/TI/TE=7.6/1.7/500 ms, flip angle=20°, voxel 

size=0.781×0.781×2.0 mm
3
; whereas the FLAIR imaging 

parameters were: TR/TI/TE=10002/2200/119 ms, flip 

angle=90°, voxel size= 0.781×0.781×3.0 mm
3
. On 3.0T 

MRI, T1-weighted imaging parameters were: 

TR/TI/TE=10.4/4.5/300 ms, flip angle=15◦, voxel 

size=0.39×0.39×2.00 mm
3
; whereas the FLAIR imaging 

parameters were: TR/TI/TE= 9002/2250/124 ms, flip 

angle=90◦, voxel size=0.39×0.39×3.00 mm
3
. 

B. Manual and Automatic Segmentation 

Manual and Automatic segmentation methods were used to 

extract hippocampus, where the latter included: FreeSurfer, 

Hammer, LocalInfo, and ABSS. These fully automatic 

segmentation methods were applied to all the 157 subjects in 

order to extract hippocampus volume in the 3D space. For 

this purpose, first the DICOM images were converted by 

MRIcro [11] to NIfTI format; then, the automatic 

segmentation methods were applied to the images. Figure 1 

shows the surface rendered cortex and hippocampus of T1-

weighted MR images of a 52-year-old female who has been 

affected by mTLE for 19 years before undergoing surgery 

and its segmented hippocampus using the ABSS method. 

For manual segmentation, the Regions Of Interest (ROIs) 

encompassing the hippocampi were outlined in coronal 

plane; then, fine-tuning steps were done in sagittal view. The 

manual outlining is done in sequential coronal T1-weighted 

MR images; for identifying the hippocampus position, an 

MRI atlas is used as a reference [12]. For each subject, both 

the right and left hippocampi were segmented by an expert 

in the medical image analysis laboratory of the Henry Ford 

hospital using MRIcro. These were verified by two other 

investigators. Manual segmentation of hippocampi took 

approximately 5 hours per subject.  
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Fig 2: Dice coefficient of the four methods of automatic segmentation (FreeSurfer, Hammer, LocalInfo, ABSS) by case number for all the 157 mTLE 

patients. The cases have been sorted according to the value of the Dice coefficient obtained for the most accurate method (ABSS).  
 

 

C. Performance Measures 

We used the Hausdorff measures as the distance between 

two compact non-empty subsets of a metric space [13] in 

order to find the similarity of automatic and manual 

segmentation results. Hausdorff measure between two closed 

and bounded subsets A and B of a given metric space M is 

defined as,  

                           ,                                       (1) 

                                                                           (2) 

                     ,                                                      (3) 

where h(A,B) is the direct distance between A and B, d(α,B) 

is the distance from a point to the set B, and µ(α ,B) is a 

point distance in the metric space M. The smaller        , 

the more similar the distance between A and B.  

The similarity between automatic and manual 

segmentation results can be assessed using overlap 

measures. One of the most popular methods, which we used 

for comparing each of the four automatic segmentation 

method against the gold standard, is based on the Dice 

Coefficient, defined as,  

                 
       

        
                                                   (4) 

where A and B represent the regions being compared. Dice 

coefficient ranges from 0 to 1, where 1 means complete 

overlap. The volumes are measured by voxel counts. In 

addition, the following Similarity measure is related to Dice 

coefficient,  

           
              

                                           
         (5) 

                 
            

              
                                          (6) 

Positive predictive value or precision is defined as the 

number of true positives pixels for segmentation divided by 

both numbers of true positives and false positives for pixel 

segmentation.  

          
              

                                
                               (7) 

 

Root Mean Square (RMS) distance is used as a statistical 

measure to show the magnitude of a varying quantity of 

objects and is defined as,  

                 √                                             (8) 

where x and y are the horizontal and vertical distances 

between the result of automatic segmentation and the bench-

mark. RMS is used to show if the quantity of segmentation 

is varying, so the smaller its value, the higher the similarity.  

III. RESULTS 

TABLE I summarizes the results in terms of mean and 
standard error of Dice coefficient, Hausdorff distance, 
Precision, and RMS for the four automatic segmentation 
methods considered in this study applied to the T1-weighted 
images of the mTLE patients. The Dice coefficient of the 
four evaluated methods for automatic segmentation by the 
case number for all subjects is shown in Fig. 2. The cases 
have been sorted according to the value of Dice obtained for 
the ABSS method, which provided the best accuracy among 
all the four methods.  

 

 

TABLE I: Mean and standard error of different measures. 

 Automatic Segmentation Method 

 

 
ABSS LocalInfo FreeSurfer Hammer 

Dice 
   0.78± 

    0.01 

  0.74± 

    0.01 

0.67± 

0.01 

0.65± 

0.01 

Hausdorff   3.09± 
    0.20 

3.79± 
    0.23 

5.77± 
0.20 

5.24± 
0.23 

Precision    0.81± 

  0.01 

   0.77± 

0.01 

0.85± 

  0.01 

0.71± 

0.01 

RMS 
   1.26± 

  0.06 
  1.50± 

0.08 
  2.04± 

0.06 
2.08± 
0.07 
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The Dice coefficient for ABSS is 4% (p-value<2×10
-3

), 13% 

(p-value<5×10
-33

), and 17% (p-value<2×10
-47

) higher 

compared to LocalInfo, FreeSurfer, and Hammer, 

respectively, which shows that the segmentation performed 

using the ABSS method has more overlap with the gold 

standard than the others. The Hausdorff distance for ABSS 

is 23% (p-value<3×10
-2

), 87% (p-value<7×10
-19

), and 70% 

(p-value<2×10
-11

) lower compared to LocalInfo, FreeSurfer, 

and Hammer, respectively, which also suggests that the 

ABSS automatic segmentation method is more similar to the 

gold standard. The Precision for ABSS is 5% (p-

value<3×10
-10

), -5% (p-value<3×10
-8

), and 12% (p-

value<2×10
-21

) higher compared to LocalInfo, FreeSurfer, 

and Hammer, respectively. Note that the precision obtained 

using the FreeSurfer is the highest, which is an interesting 

result that is discussed in the conclusion section. The RMS 

distance for ABSS is 19% (p-value<2×10
-2

), 62% (p-

value<6×10
-18

), and 65% (p-value<5×10
-16

) lower compared 

to LocalInfo, FreeSurfer, and Hammer, respectively, which 

shows that the ABSS has less varying quantity than the other 

competing methods.  

IV. CONCLUSION 

Several automatic segmentation techniques have been 

proposed in the literature; however, most of them have been 

tested only in nonepileptic subjects. To the best of our 

knowledge, there are only few reports of automatic 

hippocampal segmentation in the case of patients affected by 

Mesial Temporal Lobe Epilepsy (mTLE). In some studies 

very limited numbers of epileptic subjects are used. Our 

group used 46 epileptic patients in a previously publish 

study. In this study, we assessed and validated the most 

applicable automatic segmentation methods on 157 epileptic 

subjects. The results show that the Automatic Brain 

Structure Segmentation (ABSS) method is the most accurate 

automatic segmentation method for mTLE among the four 

evaluated methods. Specifically, LocalInfo, Hammer, and 

FreeSurfer are less accurate methods, respectively, 

according to the Dice coefficient, Hausdorff distance, and 

Root Mean Square Distance. Precision measure shows that 

FreeSurfer is more precise than LocalInfo and Hammer 

while using other measures this superiority is not confirmed. 

This result is logical and predictable because the FreeSurfer 

segments larger regions than the other methods and for this 

reason true positive and, ultimately, precision increase. 

Consequently, precision is not as meaningful as other 

measures in the evaluation of hippocampus segmentation 

results.  
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