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Abstract—This paper presents a framework for segmentation 

of renal parenchymal area from ultrasound images based on a 

2-step level set method. We used distance regularized level set 

evolution method to partition the kidney boundary, followed by 

region-scalable fitting energy minimization method to segment 

the kidney collecting system, and determined renal 

parenchymal area by subtracting the area of the collecting 

system from the gross kidney area. The proposed method 

demonstrated excellent validity and low inter-observer 

variability. 

I. INTRODUCTION 

Some children with urologic disorders maintain 
preserved kidney function over time while others progress to 
end stage renal disease (ESRD) [1, 2, 3]. Improved methods 
to predict which children are at greatest risk for ESRD are 
essential to identify those most likely to benefit from 
therapeutic interventions that decrease progression of loss of 
kidney function [4, 5]. Renal parenchymal area (RPA), 
which is the net functional area of the kidney, is obtained by 
subtracting the area of the kidney collecting system (CS) 
from the gross kidney area. RPA is associated with the risk 
of ESRD, with smaller areas likely indicating a decreased 
nephron mass and an increased likelihood of ESRD over 
time [6]. Currently, RPA is measured manually, which is a 
time intensive process that is inherently prone to inter- and 
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intra-observer variability. Our objective was to develop a 
semi-automated method of determining RPA in order to 
decrease the variability in RPA measurement and human 
resources needed to obtain these measurements. 

Ultrasound (US) is extensively used in the evaluation of 
children and adults with many different diseases and 
anatomic anomalies. However, it is especially difficult to 
segment objects of interest due to the relatively poor quality 
of US images compared with acquisitions from computed 
tomography (CT) and magnetic resonance imaging (MRI). A 
great deal of segmentation work using US images focuses on 
active contours taking the speckle noise into consideration 
[7, 8, 9, 10]. Although texture or shape priors can be 
incorporated into active contours to guide the motion of 
contours to define the kidney boundary [8, 9, 10], these 
methods are not sufficient for delineating RPA because they 
do not take into account the variability in both the shape and 
the size of the CS which may be quite large in patients with 
urologic diseases. 

In this paper, we present a framework to segment RPA 
from US images using a 2-step algorithm based on active 
contour models in a level set scheme. Specifically, we used 
distance regularized level set evolution method (DRLSE) 
[11] to partition the boundary of kidney, followed by region-
scalable fitting energy minimization method (RSF) [12] to 
segment the CS within the kidney to determine RPA. We 
allowed user-interaction to initialize the active contour, 
which consequently helped guide the contour to converge at 
edges of objects in a few iterations. Furthermore, the 
proposed method appeared to be reliable and valid, with 
little intra- or inter-observer variability in RPA 
measurements and similar values obtained from the proposed 
framework and gold-standard manual measurements. 

This paper is organized as follows. In Section II, we 
discuss work on defining level set functional preparing for 
segmentation of kidney and CS, respectively. We report on 
the experimental results of our framework comparing with 
manual segmentation in Section III. Conclusions are made in 
Section IV. 

II. LEVEL SET FORMULATION 

A. DRLSE for Kidney Segmentation 

In level set models, contours are embedded as zero level 
set of a level set function (LSF), and are driven toward the 
boundary of objects along with the evolution of LSF 
according to minimization of an energy functional. Let I  be 
an image on a domain , ( )R  denote an LSF, and C  
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denote the zero level set of  . We define energy 

functional )( by 
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where  ,  and   are coefficients of level set regularization 

term )(P , length term )(L  and area term )(A , respectively. 
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where G
is a Gaussian kernel with a standard deviation  . 
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Equation (6) can be minimized by the variational method 
and gradient flow: 
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with an initial )x()0,x( 0  . 

We evolve   according to (7) with C  evolving  

synchronously toward the kidney boundary, and eventually 

C  will converge at the edge of the kidney. It is worthwhile to 

use edge based DRLSE to determine kidney boundary 
because region based models become unreliable due to the 
similarity between pixels from inside and outside of kidney. 
Next, we segment the CS via region based RSF. 

B. RSF for CS Segmentation 

Let I  be an image, x  and C  be a point and a closed 

contour in the image domain , respectively, 
1  denote the 

region outside C , and 
2  denote the region inside C . 

We define energy functional )( by 
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Figure 1.  The proposed RPA segmentation framework. 
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values approximating image intensities in 
1  and 

2 , 

respectively. In addition, C  is the length of contour C , )(P  

is the level set regularization term, given by (3) and (2), 
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The motion of C  will progress to the boundary of the CS 

with the evolution process of   according to (10). Then RPA 

can be calculated by subtracting the area of the CS from the 
gross kidney area obtained before. 

C. The RPA Segmentation Framework 

Fig. 1 shows the proposed framework of RPA 
segmentation. First we use DRLSE to partition the kidney 
boundary, followed by RSF to segment the CS within 
kidney, and then RPA can be determined as a consequence. 
Minimal user-interaction is allowed to modify the shape of 
the kidney by picking more points to reinitialize the LSF. 
Letting users, especially experts, modify the shape of the 
kidney is an easy way to improve the accuracy of 
segmentation and extends the clinical applicability of this 
framework. 

III. EXPERIMENTAL  RESULTS 

We validated the proposed framework based on a 
random sample of 10 US images from 20 boys with a history 
of posterior urethral valves who were 6 months of age or 
younger at the time of presentation. The key parameters in 
the DRLSE model are  ,   and   while the important 

parameters for the RSF model are 
1 , 

2 ,  ,  and  . Unless 

otherwise specified, we set 2.0 , 5.0  , 9.0  in the 

first model, and 11  , 22  , 255*255*008.0 , 1  and 

3  in the other model. 

A.  Segmentation of RPA 

The DRLSE model and RSF model have been applied to 
US images. Fig. 2 demonstrates the experimental results for 
a right kidney image of an infant. We used DRLSE and RSF 
model to partition the kidney border with brighter intensity 
and the CS with darker intensity, respectively. For this 
experiment, eight points were picked to outline the shape of 
the kidney coarsely while the boundary of the CS was 
initialized using squares centered at two selected points. Fig. 
2 (c) shows the segmentation results of the kidney and the 
CS after 60 iterations under the proposed framework, while 
Fig. 2 (d) is the ground truth created by a urologist. We 
highlight RPA on Fig. 2 (e) and (f), respectively. 

B. Measurements of RPA 

We used the attribute PixelSpacing of DICOM files 
corresponding to US images to calculate the area of RPA. 
The first value of PixelSpacing is the spacing between the 
centers of adjacent rows in mm while the second value is the 
spacing between the centers of adjacent columns in mm. The 
area of RPA can be measured accurately as long as we obtain 
both the total number of pixels belonging to RPA and the 
values of PixelSpacing. 

C. Validation of Intra-Observer Reliability 

Using manual RPA segmentation as the gold standard, 
we determined the validity of the proposed framework: 

M A

SN
M




where M denotes the set of pixels within the manual 
segmentation by experts, A denotes the set of pixels obtained 
by the proposed method, and |  | denotes point set of 
segmentation results. We use SN to demonstrate the 
deviation from manual segmentation. The higher SN score, 
the closer the segmentation result obtained by the proposed 
method is to the manual segmentation result. A urologist 
(GET) manually measured RPA from 10 US images (Table 
I). 

Figure 2.  Experimental results on kidney and CS segmentation. (a) The 

test image. (b) Initialization of the segmentation process. (c) Segmentation 

result of the proposed method. (d) Manual segmentation result. (e) RPA 

obtained by the proposed method. (f) RPA obtained manually. 

The quantitative results showed that our method was 
effective in segmenting RPA, with SN scores higher than 0.9 
for all cases. Furthermore, different users obtained similar 
results with this method, showing its robustness to 
initialization. 

However, the variability in RPA measurements between 
different users tended to be vulnerable with respect to test 
images with weak boundary conditions. For instance, on 
image 5 (Table I) user 1 obtained an increment by 4.76% 
compared with user 2 in SN score likely due to an unclear 
kidney border. Moreover, measurement precision could be 
improved by averaging the RPA of repeated experiments. 
We will conduct more extensive experiments in RPA 
measurements to further improve the proposed framework 
for clinical application. 
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IV. CONCLUSION 

We present a framework to segment RPA from US 
images using a 2-step algorithm based on level set models. 
Specifically, we use DRLSE and RSF to segment the gross 
kidney area and CS, respectively, and then determine RPA 
by subtracting the area of the CS from the gross kidney area. 
User-interaction is allowed within the initialization of LSF to 
guide the process of evolution of LSF. The proposed method 
is accurate and reliable and is robust to variability in the 
points of initialization. This framework should extend the 
clinical applicability of RPA. 
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TABLE I.  COMPARISON OF MEASUREMENT RESULTS 

Image 

Number 
Method 

RPA (square 

centimeter) 
SN 

1 

The proposed 

framework 

User 1 7.032 0.950 

User 2 6.918 0.964 

Manual segmentation 7.159 - 

2 

The proposed 

framework 

User 1 9.565 0.928 

User 2 9.308 0.921 

Manual segmentation 8.964 - 

3 

The proposed 

framework 

User 1 12.36 0.965 

User 2 11.89 0.932 

Manual segmentation 12.44 - 

4 

The proposed 

framework 

User 1 17.53 0.972 

User 2 17.44 0.977 

Manual segmentation 17.29 - 

5 

The proposed 

framework 

User 1 9.171 0.947 

User 2 8.790 0.904 

Manual segmentation 9.297 - 

6 

The proposed 

framework 

User 1 11.46 0.914 

User 2 11.58 0.920 

Manual segmentation 11.92 - 

7 

The proposed 

framework 

User 1 9.332 0.982 

User 2 9.335 0.985 

Manual segmentation 9.319 - 

8 

The proposed 

framework 

User 1 8.108 0.943 

User 2 8.227 0.959 

Manual segmentation 7.897 - 

9 

The proposed 

framework 

User 1 7.180 0.951 

User 2 6.943 0.966 

Manual segmentation 6.727 - 

10 

The proposed 

framework 

User 1 9.189 0.972 

User 2 9.140 0.980 

Manual segmentation 9.135 - 
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