
  

 

Abstract— A method of Visual Scene Preparation for 

the patients suffering Retinitis Pigmentosa is 

implemented in hardware for the first time. The scene is 

captured with two cameras, one visible spectrum and one 

infra-red, in order to distinguish between the live and 

non-live objects. The live objects are subsequently 

emphasized in the output image, thus helping a patient to 

see the most significant detail with the healthy part of the 

retina. The implementation uses Verilog language and 

FPGA platform. A system prototype is analyzed and 

compared to MATLAB results. 

 

Index Terms— Field Programmable Gate Arrays (FPGA), 

Anisotropic Diffusion Filter, Image Simplification, Real 

Time, Augmented Vision, Retinal Prosthesis, Infra-Red 

Camera.  

I. INTRODUCTION 

Retinal prosthesis considered the most hopeful way to 
restore vision for those with the blinding condition; Retinitis 
Pigmentosa (RP). This inherited, degenerative eye disease 
causes severe vision impairment leading to total blindness in 
some late stage patients [1]. The pathology of the condition is 
the malfunction of low-light sensing rod cells (predominant 
in the peripheral vision) leading to a progressive destruction 
of surrounding light sensing cone cells. However, while there 
is a loss of the light sensing cells and reorganization of the 
processing layers in the retina. The main signal transmission 
pathways and retinal ganglion cells are still largely intact. [2]. 
This has led to the development of retinal prostheses which 
have moved into the commercialization phase [3]. There are 
still many challenges in this field, and current returned vision 
is very rudimentary. 

The discovery of the channelrhodopsin in 2003 has led to 
optogenetic/photonic stimulation approaches to retinal 
prosthesis [4]. In this case, opsin proteins are used to 
sensitize a new layer which can then be stimulated with short 
pulses of ultra high intensity light. [5], [6]. To this end, we 
have previously demonstrated this approach using an active 
matrix CMOS controlled Gallium Nitride LED array [7]. But 
even in this case we do not expect perfect visual return in the 
first instance. As such, image processing methods can be 
used to maximize the useful information to be transferred to 
the patient [8].  

Although all forms of visual prosthesis necessitate the use 
of image processor, there has been little focus on integrated 
scene enhancement specifically for retinal prosthesis. Most 
previous enhancement methodologies have been for 
 

 

augmented reality approaches to improve the vision of those 
with partial visual loss. These have primarily focused on 
representing the scene in the form of segmented edges or by 
enhancing the contrast using histogram equalization. Our 
own efforts in this field have been to create an image 
processing platform to enhance the visual scene before 
downscaling and transmitting it into our micro LED 
stimulator arrays [9]. The platform was based on enhancing 
the scene contrast by cartoonizing and non-linearly 
downscaling it into a smaller size. However, to maximize the 
information of downscaled images, it is necessary to segment 
them into important and less important regions.  

 

Figure 1 (A)The optical system alignement of the infrared and visible 

cameras, according to input scene. (B) General system flowchart illustrating 

the inputs and outputs of our Scene Preperation block. 

Although many image segmentation techniques exist in 
the literature, we require one which can be implemented on a 
real time low power platform which can be operated on a 
battery. The work reported in this paper presents a novel 
FPGA-based implementation of an infrared camera as a 
based method to segmenting key features in the visual scene 
based on the object temperature. This multispectral technique 
is used to simplify the processing and thus processing energy 
cost. We demonstrate efficacy and low power real-time 
performance.  

II. METHODS 

The original concept of infrared assisted scene 
segmentation was presented by Al-Atabany [10]. The system 
consists of two cameras; visible CMOS and infrared, which 
were optically aligned via a visible/IR beam splitter to view 
the same visual scene. In our experiments the two cameras 
are optically aligned as shown in Figure 1(A). The source 
images from the cameras and the resultant segmented image 
are shown in Figure 1(B). This is achieved by feeding the IR 
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and visible images into a scene preparation block on the 
FPGA from memory. The final fused image is transferred 
from the output buffer to output memory. Our scene 
preparation FPGA implementation is divided into three main 
parts labeled figure 2 and described in A, B and C below. 

A. IR Preparation 

The idea of using the infrared cameras comes from the 
fact that all objects act as black body radiators. They thus 
emit thermal photons of wavelength and intensity according 
their temperature. We, therefore, use this additional spectrum 
to segment objects with temperatures different than the 
ambient temperature. We start our IR preparation by 
converting the RGB input image (IR Image) into a Gray 
scale (G_Image). 

An exponential scaling function is used to segment the 
hot and cold objects from the surrounding background. 
Exponential scaling changes the dynamic range of the image 
in order to enhance (boost) the high intensity pixel values 
while decreasing the low intensity pixel values. Thus, by 
utilizing such scaling on both low and high ends of the 
image, we can segment important structures at temperature 
extremes while ignoring the less important ambient 
temperatures at the median intensity of the image.  

 
(1) 

 

Where I is the original image, Iexp and INexp are the 
exponentially scaled images for the original and it’s negative. 
Then the two exponentially scaled images are added together 
and scaled exponentially in order to suppress the low 
intensity pixel values. The resulted image includes the 
segmented cold and hot objects existed in the original 
infrared image.  

 (2) 

 The results for the 256 possible intensities are calculated 
via a lookup table in our FPGA implementation. The 
outcome allows us to map the input image (G_Image) to 
output image (Exp_Image). 

To remove any discontinuity, the segmented image is 
smoothed by convolving it with a Gaussian filter.   

 
(3) 

 

In our FPGA implementation for the Gaussian filter, we 
have an input buffer for two incoming rows from the input 
image (Exp_Image) as discussed in details below, we use 
simple shift and addition for the calculations, as all 
coefficients of Gaussian filter are powers of 2. The final 
image in the IR preparation stage (GF_Image) is used as a 
decision map to segment and fuse the final enhanced image.  

B. Visible Preparation 

As for all current retina prosthesis devices, only a 
grayscale image will be used in stimulating the retina. 
Therefore, the visible RGB image (Visible Image) is firstly 
converted into YUV color space, which takes human 
perception into account, allowing reduced bandwidth for 
chrominance components, we concerned about the U value 
using the following equation to get the output image 
(U_Image): 

 
(4) 

Where U the 8 bit output grayscale image R, G and B are 
the 8 bit red, green and blue input colors of the image 
respectively. The input coefficients used in this equation are 
powers of 2, which mean that the internal FPGA 
implementation can be achieved through shifting and 
addition. 

For purely visual segmentation, we use a cartoon 
enhancement approach. This improves the contrast of 
visually important features, by simplifying and reducing 
contrast in low-contrast regions and artificially increasing 
contrast in higher contrast regions. To achieve this cartoon 
effect we use anisotropic diffusion filtering which was 
initially suggested by Perona and Malik in 1990 [11]. This is 
a nonlinear iterative process which increasingly smoothes an 
image while preserving the significant edges. The equation of 
the anisotropic diffusion in the discrete domain is: 

 
(5) 

 

Where n denotes the iteration number between 1 and 

N;is the gradient operator; C is the diffusion coefficient; 

∆T is the time step (it controls the accuracy and the speed 

of the smoothing) and IH, IV represents the diffusion in 

horizontal and vertical directions. 

Figure 2 Full FPGA architecture blocks consist from A. the IR preparation 3 steps then B. the Visible preparation main three steps and finally C. the 

merging block that produces the final Fused Image. 
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 The diffusion coefficient used in this paper is then 
calculated from the following equation: 

 

(6) 

In figure 3 we present our anisotropic diffusion filtering. 
The information stream arrives from (U_Image) input to 
Buffer 1, the buffer output drives the Modified Sobel Module 
(MSM) which has P1, P2, P3, P4, P5, P6, P7, P8 and P9 to 
represent the nine 8-bit pixel inputs to the Modified Sobel 
Module. P5 is the central pixel in the 3x3 convolution matrix. 
The module consists of simple signed subtractors, shift 
registers and adders. The MSM module has four outputs; the 
value of the pixel (P5), the vertical and horizontal 
gradientsIX and IY, and the absolute value of the 
combined gradients FX,Y . FX,Y is  calculated as follows, and 
used as an approximation in equation 7 

 
(7) 

Finally the P5 (I
n) output used to update the image in final 

step as equation 5 illustrates. To calculate diffusion 
coefficient (C), we need to add one to the (FX, Y) output from 
the MSM and take the reciprocal for the addition result.  
Instead of this we divide the IX, IY gradients by the 
summation result in order to get (C.IH) and (C.IV) 
respectively.   

Buffer 2 consists of three sub-buffers, two of them to 
store the (C. IH) and (C. IV), and the third one used to 
store the pixel in the center of the convolution window. 
Simple Modified Sobel Module (SMSM) is used to compute 
the anisotropic diffusion result; the SMSM is similar to the 
MSM module except that we exclude some unused circuits to 

minimize power consumption. The output gradients from the 
SMSM are then added together and multiplied by ∆T = 0.25 
(shift left 2). The latter result is then added to the central 
pixel P5. Finally, the output is return back to input to do a 
next iteration (n), this is continues until the N counter (which 
holds the number of iterations) equals to zero then the final 
output image (AD_Image) will ready. 

We then define two threshold values, τmin ,τmax and we set 

all pixels of the (AD_Image) below τmin to 0 and all the 

pixels above τmax are set to 255. The final image in the 
visible preparation stage (TH_Image) is used in fusing the 
final enhanced image. 

C. Combining the IR and Visible Spectrum Images 

The infrared segmented image (GF_Image) is used to 
create weighted decision regions by which a linear 
combination of the pixels in the visible (Visible Image) and 
the cartoon visible (TH_Image) images is used to generate 
corresponding pixels in the fused image. Then the fused 
image will be: 

 
(8) 

III. RESULTS AND DISCUSSION 

Figure 4 (A)The visible image of a cup contains hot water. (B) The Infrared 

image for the cup. (C) The fused image output.  

Figure 3 Full anisotropic diffusion filter architecture consists from Modified Sobel Module (MSM), two buffers with two Simple Modified Sobel 

Module (SMSM) that has the sme functionality of (MSM) but with eliminating unnecessery circuit elements, and finally simple add/shift circuits with 

approximation of the product terms (C.IV) and (C.IH).  
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In Figure 4 the two inputs of our algorithm are shown where 

(A) represents the visible image for the cup contains hot 

water, while in (B) the IR image shows the cup with orange 

color according to its high tempreture, the final fused image 

represented in (C) with the cup highligthed more than 

background. 

 

Figure 5 The execution time (ms) for different images sizes of the cup for 

both MATLAB and FPGA. 

The data displayed in figure 5 shows the advantage of using 

the hardware implementation (FPGA) over using the 

software (MATLAB), especially for large image sizes. The 

code was implemented on a MATLAB platform on a 

desktop computer; with a 2.8-GHz Intel core quad processor, 

4-Gb memory, the FPGA listed below running on 40MHz 

clock frequency, we notice a significant time increase when 

the size of the image goes over 256x256 in software, while it 
increases with same scale in hardware implementation. 

Table 1 The FPGA used resources with maximum frequency and power. 

Logic and Memory Rescores 

SPARTAN-6    xc6slx150t 

Used Available Utilization 

Number of Slice Registers 3,115 184,304 1% 

Number of Slice LUTs 1,631 92,152 1% 

Number of occupied Slices 422 23,038 1% 

Maximum internal frequency 44.217MHz 

Est. Power Consumption 159 m W 

Table 1 shows the utilization of resources used in the design 

of the filter. It is shown that it utilized about 1% of the 

available resources on the FPGA device Spartan-6     

XC6SLX150t-3, this due to the simple suggested operation 

used during the design of the filter. 

Most visual prostheses will be wearable technology where 

higher resolutions are desirable. In our design architecture it 

is possible to add more filters working in parallel to each 

other, thus not increasing the latency, each filter consuming 

approximately 160mW.  

IV. CONCLUSIONS 

In this paper we have presented a processing platform to 
enhance the information flow in visual prosthesis. Although 
our focus is on optogenetic retinal approaches, the presented 
work is applicable to all forms of prosthesis where the visual 
return is significantly lower than normal. The aim of this pre-

processing is to enhance and maximize the visual information 
included in the scene before stimulating the retina. Using our 
multispectral IR-visible approach can improve power and 
speed performance of the hardware by simplifying 
processing.  
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