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Abstract— Currently, the evaluation of placental maturity has 

mainly focused on subjective measure, which highly depends on 

the observation and experiences of the clinicians and not reliable. 

This paper proposes a new method for grading placenta 

maturity in B-mod ultrasound (US) images automatically based 

on local intensity order pattern (LIOP) and fisher vector (FV). 

After extracting invariant LIOP feature from the affine 

covariant region, the feature is encoded by FV to improve the 

classification accuracy and reduce the processing time. 

Experimental results show the effectiveness of the proposed 

method with an accuracy of 0.9375, a sensitivity of 0.9804 and a 

specificity of 0.9375 for the placental maturity grading. 

Moreover, experimental results demonstrate that the LIOP 

feature outperforms the traditional SIFT feature for grading.   

 

I. INTRODUCTION 

 
Ultrasound (US) imaging has been widely used in prenatal 

diagnosis due to its radiation-free, direct-use and low cost. 
Placental maturity grading based on B-mode ultrasound image 
is the most frequently used functional evaluation of placental 
abnormalities such as fetal death, still birth, small gestational 
age and various pregnancy complications. Placental function 
is an important index to directly assess the fetal growth and 
development, which reflects intrauterine growth conditions to 
ensure fetus health. However, this method relies too much on 
visual observation of placental ultrasound images to 
determine their degree of calcification, and may cause errors 
by doctor’s misjudgment and discrepancies. The subjective 
evaluation requires high level and experienced doctors, but it 
is challenging in the relatively backward areas. To resolve the 
adverse effects, the computer-assisted classification method is 
developed to make the judgment not only from doctor's 
subjective diagnosis experience, but also the extracted feature, 
which can be more precise.  

In the literature, automatic classification algorithm for 
ultrasound placental maturity classification has been 
developed to reduce the incidence of judgment error, 
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standardize medical test and reduce the doctor’s workload. 
For example, the first placental maturity classification was 
proposed by Grammum [1] in 1979 to divide the chorionic 
plate, substance and basal plate of the placenta into four levels. 
However, this method relied on visual observation of 
placental ultrasound images to determine the calcification 
degree, which was highly dependent on the subjective 
judgment of the operator. Liu et al. [2] proposed to 
automatically classify placenta maturity using SVM classifier. 
A classification rate of 90% had obtained based on the three 
quantitative parameters: gray variance, distortions, and 
kurtosis. However, this classification result is not accurate 
enough. Overall, the current methods have not been applied 
for clinical practice. Developing a practical computer-based 
automatic placental maturity grading method is very desirable.  

To develop a new grading algorithm for placental maturity, 
interest points should be first detected, and then invariant 
feature descriptors are calculated based on these points. There 
are lots of methods available for affine covariant region 
detection such as Harris [3] and difference of Gaussian [4]. As 
to the feature descriptor, the widely used SIFT [4] obtains 
better performance than derivative or moment based 
descriptor. Placental ultrasound images are subject to 
complex illumination modification, exposure time change and 
specular reflection by the imaging process, which is more 
challenging, and hence SIFT descriptor may be not suitable 
for this task. Meanwhile, local intensity order pattern(LIOP) 
has proved to be a very effective method successfully applied 
in object classification [5]. LIOP descriptor is robust to many 
variations and distortions. Feature point detection algorithm 
based on Harris-Laplace is more desirable than Harris due to 
its invariance to change. Therefore, Harris-Laplace feature 
point detection algorithm and LIOP local image descriptors 
are integrated for placental grading. In order to further boost 
the grading performance, the extracted features are encoded 
before representing them by a histogram of occurrence. The 
most popular encoding methods for grading are bag of visual 
words (BoVW) [6], aggregated codes of BoVW extensions 
such as vector of locally aggregated descriptor (VLAD) [7] 
and fisher vector (FV) [4].    

Placental grading based on B-mode gray-scale ultrasound 
images are related with calcification, image quality constraints 
and other external conditions. To the best of our knowledge, 
there is no uniform standard and successful application for 
automatic grading of placental maturity in the clinical practice. 
According to gestational stages of placental chorionic plate, 
the 4-grades placental maturity [1, 8] is shown in Table 1 
based on placental variations, chorionic plate, placental 
substance and basal layer. The aim of this paper is to develop 
an automatic technique to grade the placenta maturity based 
on the grading standards specified in Table 1.   
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TABLE1 CHARACTERISTICS OF 4 GRADES OF PLACENTAL MATURITY.   
Grade Chorionic plate Substance  Basal layer 

0 Straight, smooth and 

chiseled 

uniform No echo 

1 Slight undulating  unvenly 

distributed, 

scattered, 

point-like 

No echo 

2 In a serrated form, may 

extend into the substance 

of the placenta, but not 

the basal layer 

Linearly 

echogenic, 

comma-like 

densities 

Linear aligned, 

point-like 

echo 

3 Jaggered, stretched into 

basal layer 
Circular densities, 

halo with cast  

acoustic shadow 

Large, confluent 

with basal layer, 

Acoustic 

shadow  

II. METHODOLOGY 

A. Grading Framework  

As shown in the system framework of Figure 1, the input 
images are first pre-processed such as noise reduction. After 
Harris interest detection on placental images, the LIOP 
features are extracted and then encoded by FV. The procedure 
of feature vector formation is illustrated in Figure 2. The input 
placental image is first partitioned into patches, and each 
patch is represented by the patch descriptor using LIOP. 
Gaussian mixture model (GMM) is applied to generate k 
Gaussians based on the assumption of diagonal covariance 
matrix. A set of LIOP feature is encoded by FV into a single 
feature vector. Moreover, histogram of occurrence is created 
by k-means to cluster FV representatives. Feature 
normalization is applied to improve the classification 
accuracy. After encoding, the classification task is completed 
by the widely used support vector machine (SVM) method as 
it can locate the global optimal values and solve the 
over-fitting problem. 
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Figure 1.  System framework.  
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Figure 2.  Feature vector formation. 

B. Harris-Laplace Feature Point Detection 

In the feature point detection stage, the Harris-Laplace 
algorithm [1] is adopted to detect key points of placental 
image since it is invariant to illumination changes, image 
noise addition and scale change. Harris-Laplace operator 
based on Harris corner detection algorithm employs scale 
space theory to find the maximum response point at 
multi-scale space, adaptive scale correlation matrix is defined 
as follows: 
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where 
I  is integral scale,

D is differential scale, =D Is  . 

The corresponding Gaussian function is ( , , )Ig x y  . The 

approximate image gradient in the x-direction and y-direction 

is ( , , )x DL x y  and ( , , )y DL x y  . Laplace operator is defined:  

2( , , ) ( , , ) ( , , )D D xx D yy DJ x y L x y L x y          (2) 

Laplace operator will get the maximum point above the 
threshold as the characteristic intensity scale . 

C. LIOP 

LIOP algorithm is a method characterizing the local image 
luminance of order information [5]. The overall brightness of 
ROI is divided into a plurality of sequence information in each 
sub-region. As a local image descriptor, LIOP is obtained by 
sorting the selected image samples in increasing intensity 
based on the concept of local order pattern. This feature is 
invariant to light, monotonic intensity change of image, 
perspective changes, lossy compression and image blur. The 
order patterns are rotation invariant [5] by grouping the 
neighborhood sample around a pixel x, which is illustrated in 
Figure  3. The points are anticlockwise sampled on a circle at a 
radius of r.   
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Figure 3.  Layout of LIOP descriptor: shaded area is input patch (square 

area), white area is circular measurement region, and blue area is local 

neighborhood of a point.  

Let N represent N sample points around the current pixel x, 

( )Ind  is index value in the index table, 
!

i

NV  represents a 

feature vector. LIOP characteristics are defined as: 

( ( ))

!
( ( ))

( ) ( ( ( ))) (0, ,0, ,0, ,0)1
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
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                         (3) 
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where  1 2( ) ( ), ( ), ( ) ,N

NP x I x I x I x P  NP is N integers, 

( )iI x represents a pixel value in the sampling point. Permuted 

pattern based on local order to sort the neighbors:  

(1) (2) (n)( ) ( ) ... ( )I x I x I x    . All elements in the feature 

vector are 0, except the i-th element is 1. LIOP groups local 
order pattern and describes the distinctive and invariant image 
rotation regions, which is very suitable for the placental 
maturity classification. The image of a local LIOP feature 

vector is defined as： 

1 2( , , , )BLIOPdescriptor des des des               (4) 

( )
i

i x bin
des LIOP x


                          (5) 

where B is a patch number, dimension of LIOP feature vector 
is !N B .Once local order patterns are computed for all 

pixels x in the image, they can be pooled into a histogram to 
form an image descriptor. Moreover, pooling discards spatial 
information resulting in a warp-invariant statistics.  

D. Fisher Vector 

Inspired by remarkable results in [4], GMM model is 

implemented first to enhance the classification performance. 

Assuming a codebook learned by k-means:{ , 1,..., }k k K  , a 

set of local descriptors:
 
{ , 1,..., }mx m N , the feature vector is 

extracted as follows:  

1) Assign neighboring: 

 ( ) argmin .
k

m m kNN x x


   

2) Compute kv :  
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3) Concatenate kv  and normalize all feature vectors. 

To better fit data by a GMM model, higher order statistics 

(i.e. derivative) are concatenated together. Gaussian means 

and variances of the first and second order derivatives [4] 

between features and GMM center are computed by: 
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where{w , , }k k k  are the GMM mixture weights, means, and 

diagonal covariance. ( )m k is the soft assignment weight of 

the m-th feature mx of the k-th Gaussian. The derivatives of the 

log-likelihood of the GMM model are encoded by FV. The 

main purpose of the encoding is to discriminate the 

distribution difference between a specific test image and all 

fitted training image. FV  is obtained by concatenating the 

difference vectors together: (1) (2) (1) (2)

1 1[..., , ,..., , ,...].k k        

Essentially, FV is soft assigned VLAD with high-order 

statistics and an extension of BoVW. For D dimensional 

feature vector, the main difference between the BoVW and 

FV can be represented as: 

  ( ) [0,...,0,1,0,...,0],BoVW mx  
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2 non-zero dim
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   
 
 

 

PCA is performed to reduce the dimension of feature 
vector as well as processing time. Since the uncorrelated 
features and GMM covariance matrices of diagonal 
assumption are consistent, PCA whitening is also applied to 
ensure that diagonal covariance matrix assumption is 
satisfied.  

III. EXPERIMENTAL RESULTS 

A. Experiment Setup 

In our experiment, there are a total of 443 images of 
placenta, 187 images of grade 0, 135 images of grade 1, 85 
images of grade 2, and 36 images of grade 3. All images were 
acquired by an ultrasound scanner from a commercial US 
scanner (Acuson Sequoia 512, Siemens Medical Solutions, 
USA) from Shenzhen Maternal and Child Health Hospital. 
Fetal gestational age ranges from 18 to 40 weeks. 
Conventional US sweep was performed to obtain the images 
on pregnant women in the supine position by a radiologist 
with more than five years of experience in US obstetrics. The 
placental image samples of 4 classes are shown in Figure 4. 
Our system was implemented by the mixed programming 
technology of Matlab and C++. The interest detection and 
feature extraction time for an image (size: 1024768) is 6 
seconds (32GBs RAM, double quad-core multithreaded 
server with a single CPU). The whole processing time for the 
testing step requires less than 1 second on a single CPU core.  

 

Figure 4.  Image samples of 4 grades, the left upper is grade 0 image,  right 

upper is grade 1 image, the left bottom is grade 2 image, and the right bottom 

is grade 3 image.  

The placental maturity grading problem is quantitatively 
evaluated by the classification accuracy (the ratio between the 
number of correctly classified samples and the actual number 
of samples in each class). Moreover, quantitatively expressed 
classification metrics such as mean average precision (mAP), 
average accuracy, sensitivity and specificity are adopted for 
performance evaluation. The experiments are repeated at least 
10 times and the average results are reported. 

The classification results with precision and recall curve 
are shown in Figure 5, which demonstrates that the highest 
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grading result is achieved by grade 0. We can see that grades 
0-2 are more easily to be discriminated than grade 3. Grade 3 
is the most confused in placental maturity classification, 
which requires a lot discriminative power to separate it.  

The confusion matrix of the placental grading is presented 
in Figure 6, where rows denote actual grading levels, the 
columns mean the predicted grading levels. The diagonal 
elements denote the mean grading accuracy for each grade. As 
shown in the confusion matrix, the mean accuracy of 4 grades 
is 0.9375. Moreover, the overall classification accuracy for 
each grade is very high. The obtained remarkable grading 
scores indicate the effectiveness of the LIOP feature and FV 
algorithm.   

Table 2 shows the classification results for the four grades 
in terms of accuracy, mAP, sensitivity and specificity. It is 
observed that mAP is often higher than accuracy in the 
planental maturity grading. It is noteworthy that the LIOP 
feature outperforms traditional SIFT feature in grading the 
plaental maturity, namely, grading performance can be 
boosted by taking advantage of LIOP feature. Given the 
comparison result, highest classification results have been 
achieved using FV encoding method. In general, aggregating 
vectors methods (VLAD and FV) demonstrate better 
classification results than the traditional BoVW method. The 
obtained high grading result based on the proposed method 
demonstrates the practical application in the clinical practice. 
It also indicates that FV is very suitable and effective for the 
placental grading.  

IV. CONCLUSIONS 

In this paper, an automatic grading system for placenta 
maturity is presented based on LIOP and FV. The 
experimental results demonstrate that the proposed method 
accurately grade the placenta with promising performance. 
Computer-assisting placenta grading in US fetal image not 
only provides effective diagnosis, but also saves time, tedious 
work and labor associated with the diagnosis. Furthermore, 
this method is generalized and can be extended to other 
classification task.  
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Figure 5.  Precision  vs. recall curve of the grading algorithm. 
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Figure 6.  Confusion matrix of placental maturity grading.  

TABLE 2. PLACENTAL MATURITY GRADING RESULTS. 

Method Feature mAP Accuracy Sensitivity Specificity 

BoVW SIFT 0.8519 0.7235 0.9116 0.724 

VLAD SIFT 0.8851 0.7307 0.917 0.731 

FV SIFT 0.9531 0.7932 0.9261 0.788 

BoVW LIOP 0.95 0.8365 0.9725 0.9143 

VLAD LIOP 0.9706 0.9182 0.975 0.907 

FV LIOP 1 0.9375 0.9808 0.9375 

REFERENCES 

[1] P. A. Grannum, R. Berkowitz, and J. C. Hobbins, "The ultrasonic 

changes in the maturing placenta and their relation to fetal pulmonic 

maturity," Am. J. Obstet. Gynecol., vol. 133, pp. 915-22, 1979. 

[2] Z. Liu, H. Zheng, and S. Lin, "Application of Multi-Classification 

Support Vector Machine in the B-Placenta Image Classification," in 

Proc. of Int. Conf. on Computational Intell. and Software Eng., 2009, 

pp. 1-4. 

[3] K. Mikolajczyk and C. Schmid, "Scale & affine invariant interest point 

detectors," Int. J. of Comput. Vis., vol. 60, pp. 63-86, 2004. 

[4] J. Sánchez, F. Perronnin, T. Mensink, and J. Verbeek, "Image 

classification with the fisher vector: theory and practice," Int. J. of 

Comput. Vis., pp. 1-24, 2013. 

[5] Z. Wang, B. Fan, and F. Wu, "Local intensity order pattern for feature 

description," in Proc. of Int. Conf. on Comput. Vis., 2011, pp. 603-610. 

[6] S. Lazebnik, C. Schmid, and J. Ponce, "Beyond bags of features: spatial 

pyramid matching for recognizing natural scene categories," in Proc. of 

IEEE Conf. on Comput. Vis. and Pattern Recognit., 2006, pp. 

2169-2178. 

[7] H. Jégou, F. Perronnin, M. Douze, and C. Schmid, "Aggregating local 

image descriptors into compact codes," IEEE Trans. on Pattern Anal. 

and Mach. Intell., vol. 34, pp. 1704-1716, 2012. 

[8] P. A. Linares, P. J. McCullagh, N. D. Black, and J. Dornan, "Feature 

selection for the characterization of ultrasonic images of the placenta 

using texture classification," in Proc. of Int. Symp. on Biomed. Imag., 

2004, pp. 1147-1150. 

4674


