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Abstract— In this paper, we proposed a feature extraction and
machine learning method for the classification of ultrasound
images obtained from lumbar spine of pregnant patients in the
transverse plane. A group of features, including matching values
and positions, appearance of black pixels within predefined
windows along the midline, are extracted from the ultrasound
images using template matching and midline detection. Support
vector machine (SVM) with Gaussian kernel is utilized to
classify the bone images and interspinous images with optimal
separation hyperplane. The SVM is trained with 800 images
from 20 pregnant subjects and tested with 640 images from
a separate set of 16 pregnant patients. A high success rate
(97.25% on training set and 95.00% on test set) is achieved
with the proposed method. The trained SVM model is further
tested on 36 videos collected from 36 pregnant subjects and suc-
cessfully identified the proper needle insertion site (interspinous
region) on all of the cases. Therefore, the proposed method is
able to identify the ultrasound images of lumbar spine in an
automatic manner, so as to facilitate the anesthetists’ work to
identify the needle insertion point precisely and effectively.

I. INTRODUCTION
Epidural/spinal anesthesia (EA) widely used in surgery

and for post-surgical pain relief. A properly performed
epidural procedure is the ’gold standard’ of treatment to
reduce pain during childbirth [1], [2] . Around 50-90% of
women in labour in developed countries choose EA for pain
relief [3]. However, the failure rate of EA has been reported
to be as high as 20% [4], [5]. One of the key challenges
for EA is the identification of needle insertion site, which is
traditionally identified by palpating on the patients’ lumbar
spine [6]. This blind technique may requires multiple needle
insertion attempts, leading to the complications for patients.
The case is worse for patients with obesity problems, which
is increasingly common for pregnant population.

Ultrasound imaging, as a non-ionizing, convenient and
inexpensive medical imaging modality, has been introduced
to EA to assist epidural needle insertion since the 1950s
[7]. Previous researches have confirmed the effectiveness
of ultrasound imaging compared with traditional palpation
method [8]–[10]. However, despite the benefit of ultrasound,
the effective interpretation of ultrasound images remains a
challenge, especially for anesthetists who received limited
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training in reading ultrasound images [11]. The low spatial
resolution and severe speckle noises of ultrasound images
results in the subtle anatomical features to be indiscernible
from the surrounding background [12]. It requires profes-
sional training to fully interpret the ultrasound images with
deep learning curve. Therefore, anesthetists are reluctant to
adopt ultrasound imaging in the common practice.

In order to ease the ultrasound image interpretation and
facilitate the applicability of ultrasound in epidural needle
insertion, automatic interpretation of lumbar ultrasound im-
ages has been investigated by researchers. Train et al. utilized
phase symmetry and template matching to extract the lamina
and ligamentum flavum in the paramedian images [13].
Kerby et. al proposed to label the lumbar level automatically
with panorama images obtained from the paramedian view
[14]. Furthermore, an augmented reality system (AREA)
which projected the identified lumbar vertebra levels on the
patients back was developed so as to assist spinal needle
insertion [15].

Although automatic interpretation of lumbar ultrasound
images has been explored, it is mainly focused on the
paramedian view. Ultrasound images in the transverse view,
which reveal important anatomical information and frequent-
ly been used by anesthetists for precise pre-puncture localiza-
tion of needle insertion site, are less researched into from the
automatic image interpretation perspective. In our previous
research, an image processing and identification procedure
was developed for the automatic interpretation of ultrasound
images in the transverse view [16]. Template matching com-
bined with position correlator (PC) was proposed to identify
the interspinous images and achieved a success rate of 100%
on ultrasound images obtained from lumbar spine of healthy
volunteers. However, since the clarity of anatomical feature
of lumbar spine might degrade during pregnancy [17], the
original position correlator designed for healthy volunteer is
not effectively applicable to the pregnant patient.

In order to improve the identification accuracy for preg-
nant patients and make the classification algorithm more
general applicable, a feature extraction, feature selection and
classification algorithm based on support vector machine
(SVM) is developed. Three contributions are achieved with
this paper. Firstly, a set of features, which are composed of
important parameters, are extracted from the lumbar ultra-
sound images with template matching and midline detection
methods. Secondly, a SVM model with Gaussian kernel is
trained using the extracted feature sets, so as to generate
the maximal margin for the classification. A high success
rate is achieved with the proposed feature extraction and
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Fig. 1. Ultrasound Image of Lumbar Spine. (a) typical ultrasound
image when the probe is placed above spinous process, featured by the
triangular anechoic window; (b) ultrasound image when probe is placed
on interspinous space, where the articular processes, epidural space and
vertebra body are visible.

SVM classification algorithm on images collected from the
pregnant patients. Last but not least, the trained SVM model
is also tested on 36 videos and it successfully identify the
interspinous region and bone region on all of the cases
collected, with a computational speed fast enough for real-
time processing.

II. MATERIALS AND METHODS

A. Ultrasound Image Feature of Lumbar Spine

The ultrasound images taken at different region of the lum-
bar spine have different features, determined by the region
where the probe is placed. When the probe is placed directly
on the spinous process (not proper for needle insertion), the
ultrasound wave will be impeded by bones, creating a long
triangular hypo-echoic acoustic shadow Fig 1(a)). The the
ultrasound image will be dark with a triangular dark window
along the midline, which is the main feature of bony images.
When the probe is moved to the interspinous region (proper
for needle insertion), more details beneath the skin can be
noted, as shown in Fig 1(b). The ’flying bat’ alike shape on
the ultrasound image indicates that the location of the probe
is a suitable site for needle insertion [18].

B. Feature Extraction

Before feature extraction, raw ultrasound images are pre-
processed with difference of Gaussian enhanced local nor-
malization, so as to remove the speckle noises and extract
the anatomical structure. After pre-processing, local intensity
variance induced by uneven ultrasound wave reflection rate
are also eliminated. Therefore, a potential element which
might deteriorate the image classification is removed.

In this paper, image features are extracted with two
approaches, the template matching method to detect the
key anatomical features and midline detection approached
to obtain image features along midline.

1) Template Matching: The visibility of ’flying bat’ shape
is the criterion adopted by anesthetists to recognize inter-
spinous images [18]. However, in computer vision, due to
the variation and distribution extent of the ’flying bat’ shape
in the image, the recognition of the entire shape is not a easy
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Fig. 2. Feature Extraction with Template Matching. (a) Sub-templates for
anatomical features, from left to right: Vertebra body and epidural space,
left articular process and right articular process; (b) Matching result of
key anatomical features: The left column: matching result of vertebra body
sub-template; the right column: matching result for articular process sub-
templates; the upper row: interspinous image; the lower row: bone image.
The optimal matching position is marked by a circle.

task. In our previous research, we proposed to decompose
the ’flying bat’ shape into three sub-features: the ’bat ear’
(articular process), epidural space and vertebra body. The
decomposed sub-features recognized the articular process
and vertebra body with high accuracy on images obtained
from volunteers.

In this paper, similar decomposition is employed. Template
matching is used to obtain the matching position and match-
ing value between the sub-features and the images. Among
the three sub-features, the appearance of the epidural space
and the vertebra body both resemble a line. Thus, the same
linear sub-template (as shown on Fig 2(a)) is employed for
the recognition of both vertebra body and epidural space.
Of the two maximum matching regions, the one that locates
lower in the image is vertebra body and the superior one
is epidural space, which follows the anatomical structure of
the lumbar spine. In the interspinous images, the visibility
of vertebra body and epidural space is clear and both of
them can be correctly recognized. While in the bone images,
the maximum matching of the sub-template will occur at
different regions in the image; and the matching values for
both epidural space and vertebra body are low, as indicated
by Fig 2(b). The situation is the same for the matching of
articular processes, except that the maximum matching of
articular processes should appear on the left and right side
of the midline. Therefore, based on the matching position
and matching value, it is possible to partly discriminate the
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interspinous images and bone images.
The parameters obtained with template matching can be

utilized to constitute part of the feature vector for the purpose
of image classification, including the retrospective depth
measurement of epidural space (D1) and vertebra body (D2),
their matching values (V1 and V2), matching position of two
articular processes (P3, D3 for left articular process and P4,
D4 for right articular process) and their matching values (V3
and V4).

2) Midline Detection: The image features along the mid-
line of the ultrasound image is different for interspinous
images and bone images. For the bone images, ultrasound
image is impeded by the spinous process, resulting in an
anechoic region along the midline; while for interspinous
images, the epidural space and vertebra body along the
midline will be visible. Therefore, the appearance of black
pixels along the midline serve as an important feature for the
classification of interspinous / bone images.

For the detection of midline, a cost function J(ϑ, x0)
based on the summation of white pixels within a predefined
scanning window is formulated. The window scanned though
the entire image within [-45, +45] degrees. The position and
degree that gives the minimum cost function value will locate
the midline. In order to increase the accuracy of midline
detection for interspinous images, a penalty which decreases
its weight as a function of depth is imposed on the cost
function, so as to allow the appearance of epidural space
and vertebra body to be less penalized in the cost function.
The cost function is formulated as the in Equation 1.

J(ϑ, x0) =

n∑
i=1

C∑
j=−C

[0.5 + exp(−0.05i)]×

f(i, itanϑ+ x0 + j)×
√

(1 + 0.3|ϑ||x0 − n/2|);

(1)

The first part of the Equation 1 is the penalty term for the
appearance of white pixels at different depths. And the third
part is the penalty term if the detected midline is not near
the middle of the ultrasound image or that it is not vertical.
In equation 1, f(i, j) denotes the binary image of the pre-
processed ultrasound image with a dimension of m × n; C
represents half size of the predefined window, which can be
optimally set between 5 - 10.

After optimal ϑ′ and x′0 is obtained and midline is located,
the rate of black pixels within the predefined scanning
window can be calculated using the following equation:

Rb = 1−
∑n

i=1

∑C
j=−C f(i, itanϑ

′ + x′0 + j)

2Cn
(2)

The depth of epidural space is reported to range from
3-8 cm, indicating that the epidural space and vertebra
body appear deeper than 3cm in the image. Thus, the rate
of potential epidural space and vertebra body within the
scanning window can be calculated with:

Rw =

∑n
i>=3cm

∑C
j=−C f(i, itanϑ

′ + x′0 + j)

2Cn
(3)

Rb and Rw adds another two parameters for the feature
vector. Therefore, combining the 10 parameters obtained
from template matching and 2 parameters from midline
detection, a feature vector of length 12 is formulated.

C. Support Vector Machine

After the feature vector has been obtained and normalized,
support vector machine (SVM) is employed to optimally
classify the interspinous images and bone images. SVM
is a supervised learning algorithm which seeks a decision
boundary (or separating hyperplane) with maximal margin
for the training set. For cases where the data is non-linearly
separable, a nonlinear kernel function can be used to enhance
the separability of training data.

For the given training samples, {(xi, yi)}Ni=1, the optimiza-
tion problem is formulated as:

minw,b
1

2
wT w + C

N∑
i=1

ξi

s.t. yig(xi) = yi(wTψ(xi) + b) ≥ 1− ξi, ∀i
ξi ≥ 0, ∀i

(4)

In the equation 4, ξi is slack variable and measures the
degree of misclassification of training data xi. Training data
which are misclassified will have their corresponding ξi >
1. The parameter C is a regularization term that controls
the relative weighting between the two goals of achieving
larger margin and decreasing classification error. A larger C
corresponds to assigning a higher penalty to errors. ψ(x) is
the nonlinear transformation which maps the original feature
vector into a higher dimension space.

The dual form of the optimization in equation 4 is:

maxα Q(α) =

N∑
i=1

αi −
1

2

N∑
i=1

N∑
j=1

αiαjyiyjψ
T (xi)ψ(xj)

s.t. 0 ≤ αi ≤ C, ∀i
N∑
i=1

αiyi = 0

(5)
In this paper, the Gaussian kernel (radial basis function) is

used, with the format as equation 6 indicates:

K(x1, x2) = ψT (xi)ψ(xj)

= exp(−||x1 − x2||
2

2σ2
)

(6)

Quadratic programming can be employed to calculate α.
Then the optimal hyperplane parameter can be obtained by:

g(x) =
N∑
i=1

αo,iyiK(x, xi)

y = sgn(g(x))

(7)

D. Materials and Image Acquisition

The ultrasound video streams utilized in this research
were collected from KK Women’s and Children’s Hospital,
with institutional review board (IRB) approved and patients’
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TABLE I
STATISTICS OF TRAINING SET AND TEST SET.

Training Set Test Set
Subject Number 20 16
Image Number 800 640

Interspinous 426 374
Bone Images 374 266

TABLE II
PERFORMANCE OF SVM CLASSIFICATION .

Training Set (%) Test Set (%)
Accuracy 97.25 95.00
Precision 97.64 96.22

Recall 97.18 95.19
F0.5 97.55 96.01

consent obtained. Pregnant women scheduled for a caesare-
an procedure were recruited before they were sent to the
operation theater. 36 ultrasound video streams are collected
from 36 different subjects. After video streams are collected,
the image database is obtained by extracting still images
from the video streams. 40 images are randomly extracted
from each of the video streams, constituting 1440 ultrasound
images in the training and test database in total. The extracted
images are then labelled by an experienced sonographer: ’1’
for interspinous images and ’-1’ for bone images.

III. RESULTS AND DISCUSSION

Of the 36 videos collected, 20 of them are randomly
selected as training set and the remaining 16 are used as
test set. Since 40 images are extracted from each video, thus
there are in total 800 images in the training set and 640
images in the test set. The detailed statistical information of
the images is listed in Table I.

Based on the training set, the SVM model is trained
to get the optimal hyperplane with maximal margin. The
trained model are then validated on the test set. The best
performance is achieved when setting C = 1 and σ = 1.5.
The performance of the SVM model on both training set and
test set is displayed on Table II.

The trained SVM model is further tested on the ultrasound
video streams collected to identify the interspinous region
and bone region. In the video processing, the interspinous
region is defined by the continuous appearance of more than
5 interspinous images; while for the negative detections, if
it is in the interspinous region, no more than 2 bone images
shall be detected by the image; vice versa for bone region.
According to the definition above, the trained SVM model
is able to identify the interspinous region and bone region
correctly on all of the 36/36 video streams collected. The
computation time cost for each single frame is 57.0ms. Since
the video is collected at the frame rate of 15 FPS, thus the
computation speed is fast enough for real-time processing.

IV. CONCLUSIONS

In this paper, we proposed a feature extraction and clas-
sification procedure for the ultrasound image collected from
lumbar spine. The important anatomical features, including
epidural space, vertebra body and articular processes are
extracted from the ultrasound images. Moreover, the rate
of black pixels along with midline are also extracted after
midline is detected. Based on the features extracted from
training samples and test samples, SVM is used to classify
the interspinous/ bone images with maximal margin. The
trained SVM model is also tested on the 36 ultrasound video
streams collected from pregnant patients, and successfully
identified the interspinous region / bone region on all of the
videos collected.
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