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Abstract— This paper introduces a new signal processing 

method called Spatio-Temporal Multivariate Empirical Mode 

Decomposition (ST-MEMD). It is a new variation of Empirical 

Mode Decomposition (EMD) that takes spatial and temporal 

information into account simultaneously rather than processing 

each signal source in isolation. The original and new methods 

were tested on single-trial electroencephalogram data with a 

two-class problem, in this case data using the Motor Imagery 

paradigm in brain-computer interfacing. However, whilst ST-

MEMD retained the increase in sensitivity and specificity from 

adding spatial data, the new temporal data made no meaningful 

difference in terms of performance. 

I. INTRODUCTION 

Empirical Mode Decomposition (EMD) applies an 
iterative sifting process to a signal in order to decompose it 
into a group of Intrinsic Mode Functions (IMFs) and residual 
noise (Figure 1) [1]. It can be applied to any non-linear and 
non-stationary signal allowing it to be used in many different 
fields, from analyzing mortgage rate data [2] to 
characterizing non-linear water waves [3]. It functions by 
subtracting the mean envelope of the signal repeatedly until 
it produces a signal with a mean envelope that is 
approximately parallel with the x-axis, i.e. the signal’s 
oscillations are symmetrical. This is stored as an IMF and the 
envelope subtraction continues until no peaks or troughs are 
left, leaving the remainder of the signal to be classified as 
residual noise.  

However it can only decompose one signal source at a 
time. Park et al [4] developed a new variation of EMD that 
can decompose multiple sources of a signal simultaneously 
called Multi-variate Empirical Mode Decomposition 
(MEMD), which produced significantly better performance. 
However, whilst this new method makes use of spatial data 
to decompose the signal, it does not include wider temporal 
dynamics. The novel method detailed in this paper uses both 
spatial and temporal data to inform the decomposition 
process.  

To compare the methods, both were applied to a pre-
recorded electroencephalogram (EEG) dataset of 990 trials 
divided approximately into two equal classes. EEG uses 
electrodes placed on the scalp to measure changes in voltage 
caused by brain activity [5]. EEG can be used to construct a 
Brain-Computer Interface (BCI). A BCI is a device that uses 
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the brain-activity of a person as an input to select desired 
outputs on a computer [6]. In practice it is mostly used by 
patients with severe paralysis who cannot make use of 
keypads, joysticks or eye-gaze technology. The concept used 
in this dataset was a BCI paradigm called motor imagery. 
This is suitable as EMD has already been shown to be useful 
in processing motor imagery for classification [7]. As brain 
activity as measured at the scalp is of low amplitude and 
mixed in with other mental ‘noise’, concepts like motor 
imagery must be used to help decipher the user’s intent. 
Motor imagery as a control signal exploits the left-right 
divide of the brain and limb control. When a person 
imagines moving a limb on the left side of their body there is 
heavily localized activity on the right side of their motor 
cortex and vice-versa [8]. This activity also occurs within 
specific frequency bands. A rhythmic signal in the 8-13 Hz 
band called the µ rhythm will be suppressed on the 
contralateral side of the motor cortex. There may also result 
in resonance activity in the 20 Hz band. At the onset of 
motor imagery there will be a large desynchronization and 
resynchronization of brain activity that takes approximately 
one second. 

It is hoped that the novel method’s added temporal 
information will improve performance as it is being applied 
to an EEG motor imagery dataset. Whilst spatial information 
is of key importance in EEG signals and motor imagery 
activity due to the strong spatial localization in the motor 
cortex, temporal information is also important as rhythmic 
activity is a dominant presence in EEG signals during motor 
imagery, making it important that the temporal dynamics of 
the signal are also captured. 

II. METHODOLOGY 

A. The Dataset 

The EEG recordings used were a pre-recorded dataset of 
90 motor imagery trials from 11 different subjects [9]. The 
recordings were made with a 64-channel EEG with a 
sampling frequency of 160 Hz. The experiment covered 
several different movements but this analysis used only the 
trials that involved imagining opening and closing the left or 
right fist. Each experimental run consisted of 4.1 seconds 
neutral activity, followed by a random visual cue on the left 
or right side of a computer screen. The subject imagines 
opening and closing the corresponding fist until the cue 
disappears after another 4.1 seconds. Subjects performed this 
action 90 times in total with an approximately equal divide 
between left and right imagery. Subjects eight to eighteen 
were chosen due to having the same trial sample length of 
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1312 (8.2 s) with the visual cue occurring on the 657th 
sample. This gives a total of 990 trials. 

B. Feature Extraction 

EMD works by applying an iterative sifting process using 
the following steps to the signal, x(t): 

1. Identify the maxima and minima of the signal. 

2. Interpolate between the maxima and minima to create 
upper and lower envelopes. 

3. Calculate the mean between the two envelopes, m(t). 

4. Subtract the mean from the signal to get an IMF 
candidate, xn+1(t) = xn(t) – m(t). 

5. Check if xn+1(t) is an IMF by calculating if it is 
symmetrical with respect to zero. 

6. If xn+1(t) is an IMF then store the IMF and return to 
step 1.) with the signal x(t) = xn(t)  – xn+1(t), else 
discard and return to step 1.) with the signal x(t) = 
xn(t)  – xn+1(t). 

7. When there are less than two extrema left in the 
signal the remaining data is classified as the residual. 

The new MEMD method applies the following steps to a 
multi-channel signal: 

1. Choose a suitable point set for sampling on an (n – 1) 
sphere. 

2. Calculate a projection, denoted by {p
θk

(t)}
T

t 1
, of the 

input signal {v(t)}
T

t 1
 along the direction vector x

θk
, 

for all k (the whole set of direction vectors), giving 

{p
θk

(t)}
K

k 1
 as the set of projections. 

3. Find the time instants t
k

j


corresponding to the 

maxima of the set of projected signals {p
θk

(t)}
K

k 1
. 

4. Interpolate [t
k

j


, v(t

k

j


)] to obtain multivariate 

envelope curves {e
θk

(t)}
K

k 1
. 

5. For a set of K direction vectors, the mean m(t) of the 
envelope curves is calculated as m(t) = 

1/KΣ
K

k 1
e

θk
(t). 

6. Extract the “detail” ci(t) using ci(t) = v(t) – m(t) (i is 
an order of IMF). If the “detail” ci(t) fulfills the 
stoppage criterion for a multivariate IMF, apply the 
above procedure to v(t) – ci(t), otherwise apply it to 
ci(t). 

This results in the channels being decomposed 
simultaneously, with each channel’s IMFs occupying the 
same frequency band as the other channels’. This makes it 
much easier to analyse and compare. In this case we are 
applying MEMD to a dynamically embedded multi-channel 
signal. Taken’s theorem is applied to each signal channel and 
this converts a single channel of data into multiple snapshots 
of the signal in time using a series of delay vectors [10], 

 
Figure 1.  The average of all Dataset 11’s “think Left” trial data from channel C3 with EMD applied to it. The IMFs are sorted by frequency in a 

descending order until only the residual noise is left. Should all the IMFs and noise be summed together they will reform the original signal. This 

process is useful for extracting features from a signal that are composed of a narrow range of frequencies, such as motor imagery’s rhythmic 8-13Hz 

µ rhythm. 
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x(t) = (x(t – τ), x(t – 2τ), …, x(t – (m – 1)τ))   R 

where τ is the lag and m is the embedding dimension. 
MEMD is applied to the snapshots of every signal all at 
once, meaning it will use temporal as well as spatial 
information to decompose the channels. A similar method 
was used with Independent Component Analysis (ICA) to 
create an ICA method that could be applied to a single 
channel [11]. In that work it was found that the embedding 
dimension needs to be greater than 2D + 1, where D is the 
number of signal sources. We know that muscle activity, left 
hemisphere motor imagery, right hemisphere motor imagery 
and a variety of background noise will be picked up by the 
electrodes. As the number of sources is unlikely to exceed 
single figures a dimension size of m = 30 was selected. For 
ease of operation τ = 1 was used. 

The resulting IMFs are un-embedded and two different 
methods are applied to identify IMFs containing possible 
motor imagery information – a knowledge-based method and 
a brute force method. The knowledge-based method tries to 
identify relevant IMFs in each channel using pre-existing 
knowledge about the µ rhythm. If 5% of the IMF’s total 
power is in the 8-13 Hz frequency band it is considered as 
possible motor imagery related activity. The selected IMFs 
are then summed to form the processed signal. The brute 
force method works by trying every possible combination of 
IMF until the highest performance is found. As the maximum 
number of IMFs produced per channel in this case is 13, and 

the number of IMFs containing relevant information is 
usually less than 5, it is possible to process every possible 
combination of IMF (2379 combinations in this case) and 
record which resulting classifier gave the best performance. 

Common Spatial Patterns (CSPs) are used to extract 
features from the processed signals of either method. CSPs 
calculate a set of spatial filters that maximize the variances 
of one class and minimize them in the other [12]. Finally the 
extracted features for each class are input into a Support 
Vector Machine (SVM), using a linear kernel as it is a two-
class problem. As each user’s dataset had only 90 trials it 
was decided to use the Leave One Out method (LOO) [13]. 
This is when (n – 1) trials are used as training data and the 
n

th
 trial is used to test the resulting classifier. The result is 

recorded and the test trial is swapped with a training trial 
until results for all individual trials have been recorded. 

III. RESULTS & ANALYSIS 

The results in Table 1 for an individual dataset show that 
both EMD methods with knowledge-based selection result in 
moderate performance, with MEMD having slightly higher 
sensitivity and ST-MEMD having slightly lower specificity. 
This pattern is also present in a reduced fashion in the 
average of all eleven datasets, but the difference between the 
two methods is well within their respective standard 
deviations. The brute force selection method consistently  

Figure 2.  This figure shows the spectrograms for the average processed signal obtained with the brute force method with the waveform itself 

superimposed in purple. The plots are for electrodes C3 and C4, for the classes "think Left" and "think Right" respectively for the EEG data of User 11. 

The first row is the original MEMD method and the bottom row is the enhanced ST-MEMD method with the direction stimulus occurring exactly half 

way across the x-axis. In this case, ST-MEMD has created much clearer ERD/ERS peaks with all the power concentrated in the lower frequencies. 
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TABLE 1. SENSITIVITY, SPECIFICITY AND STANDARD DEVIATION OF MEMD 

AND ST-MEMD METHODS WITH EITHER KNOWLEDGE BASED OR BRUTE FORCE 

SELECTION METHOD APPLIED 

 

Method 

Dataset 11 Average of all datasets 

Sens. 

(%) 

Spec. 

(%) 

Sens. 

(%) 

Spec. 

(%) 

S.D 

(%) 

MEMD 

knowledge based 
40.0 53.3 48.9 52.4 12.6 

ST-MEMD 

knowledge based 
60.0 48.9 53.5 50.9 15.1 

MEMD brute 

force 
62.2 77.8 76.0 74.7 6.5 

ST-MEMD brute 

force 
71.1 64.4 75.7 71.5 8.4 

 

produces higher sensitivity and specificity. In the individual 
dataset MEMD again has higher sensitivity but lower 
specificity than ST-MEMD. In the average of all datasets 
MEMD with brute force is superior in both sensitivity and 
specificity but again the difference between the two EMD 
methods is within both their standard deviations.  

Overall ST-MEMD achieved similar performance to 
MEMD with no noticeable improvements in sensitivity or 
specificity. The brute force method consistently 
outperformed the knowledge-based method. The IMFs 

selected by the brute force method were not consistent 
between datasets but unsurprisingly they did focus on the 
frequency bands known to contain motor imagery 
information. In Figure 2 it is possible to clearly identify the 
ERD/ERS event that occurs at the stimulus time in the ST-
MEMD plots. 

The difference between the two EMD methods was well 
within their respective standard deviations, meaning that ST-
MEMD still retained the extra spatial information that was 
added. This suggests that the temporal data added nothing of 
value. This may be because the signal already contained 
some temporal data in that it was laid out in a chronological 
fashion, making the information obtained through the 
embedding process redundant. Comparatively, the single-
channel ICA method mentioned earlier saw an increase in 
performance when applied to a dynamically embedded signal 
because the ICA algorithm did not use any temporal 
information in the extraction process at all.  

The negligible performance difference could also be 
because the underlying motor imagery process affects all 
channels simultaneously and with the same signal 
morphology, with only a change in magnitude between 
channels. This reinforces the idea that the key content of 
motor imagery is spatial and housed in the lateralized 
changes in power. 

IV. CONCLUSION 

In this case there was no change in performance, with no 

increase in sensitivity or specificity, but no statistically 

relevant decrease either. This infers that ST-MEMD’s IMFS 

contained no new information but did not lose any either. 

This is probably due to the temporal data already having 

been incorporated into both methods due to the envelopes 

and the resulting IMFs having the same temporal dynamics 

embedded in the signal. 

 

EMD has many applications outside of EEG and any 

signals with strong temporal features may yet benefit from 

ST-MEMD. Alternatively, other multi-channel signal 

processing methods aside from MEMD and ICA may benefit 

from dynamical embedding to create new spatio-temporal 

processing methods. One beneficial outcome of this study is 

that it has further reinforced the idea that critical motor 

imagery information has a lot of spatial content, and is not 

overtly temporal. 
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