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Abstract— The study demonstrates part of an ambient as-
sisted living system developed for the remote care of the elderly.
Described methods and experiments involve acceleration-based
trajectories analysis that yields a feature vector to be subjected
to an expert system able to create an individual patient’s model
by learning high-level features of her/his motion. At this stage
we have implemented a footstep detector that permits each foot
movement to be analyzed separately and described in terms of
predefined features. By mounting the sensors at five various
locations on the subjects body, we have indicated areas that
feature a high sensitivity to the measurement of abnormal step
incidents. Our experiments demonstrate also features able to
distinguish abnormal patient motion.

I. INTRODUCTION

Aging of contemporary societies makes well-being and
safety of the elderly one of the major concerns in health care.
Since the continuous support (e.g. in hospitals or assisted
living facilities) is necessary in the minority of cases, remote
systems for home supervision and assistance become more
important and popular nowadays. Monitoring, processing
and transmission resources provided for alert generation in
threats might be employed and broaden to offer more sophis-
ticated tools for identification of selected individual patient’s
features. That leads to the creation of some sort of a subject-
specific model on the basis of one’s standard behaviour
(overall and detailed motion characteristics, activity time
distribution etc.) With such a model, each short- and long-
term disturbances might be detected and cause an appropriate
reaction. A broad review of such Ambient Assisted Living
(AAL) systems architecture and abilities have been drawn by
Mitas et al. [1]. Although they employ various acquisition
techniques and devices, e.g. PIR movement detectors [2],
cameras [3], radio wave or ultrasound beacons [4], the
wearable sensors are more flexible and less demanding in
terms of the amount of necessary equipment. The topic of
inertial sensors employment for activity monitoring is well
known and investigated [5], [6], [7], [8].

The goal of this study is to extract acceleration-based
features that indicate significant changes of patient walk steps
that might cause a threat of the fall or even an actual fall.
Thus, two phases are distinguished. First, the step detection
method is developed, then, the step-gated analysis of the walk
trajectory is performed.

The following subsections present the overall ambient
assisted living system and the mobile data acquisition device.
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Section II describes the input data, their preprocessing, step
detection, walk trajectories, and features extracted for each
walk step. Section III presents the experimental results.
Section IV concludes the presentation.

A. AMBIENT ASSISTED LIVING SYSTEM

The AAL system described in this paper is developed
to meet certain requirements, i.e. (1) to be able to detect
possible incidents and threats, causing an immediate remote
reaction, (2) to estimate patient’s individual characteristics in
terms of motion (gait) features, and then to reliably supervise
and predict short-term risk of dangerous situations, (3) to
provide comprehensive information about the changes in
patient’s health and life quality via long-term monitoring,
and (4) to acquire data from various sources (e.g. sensors
and interactive devices to allow patient’s conscious interfer-
ence). All necessary devices should not disturb or even be
unnoticeable for the patient.

The basic element of the system [9], i.e. the mobile data
acquisition device (MDAD) collects the data from various
sensors worn by the patient, preprocesses and forwards it to
the home endpoint (HE). HE transmits the data to the central
system, which stores, analyses and monitors the data.

B. MOBILE DATA ACQUISITION DEVICE

The MDAD is supposed to collect the data and isolate
the diagnostically important information about the patient’s
activity. MDAD receives signals from inertial sensors, dis-
tributed over a patient’s body, each containing 3-axial ac-
celerometer and gyroscope (MPU6050 modules).

Those data might be treated in miscellaneous forms,
according to the AAL system fundamentals [9]. On one
hand, a detection of incidents and threats initiates immediate
reaction; on the other hand, the variability of patient’s
behavior is acquired. The latter refers to all unexpected
and potentially dangerous patterns in the patient’s activities,
including also long-term changes in the motion features, as
possible indicators of abnormal symptoms.

Our concern in this study is to analyze possible number
and distribution of sensors in terms of their sensitivity in
the monitoring system. Several aspects have to be taken into
consideration and balanced:

• contribution brought by kinetic information from vari-
ous body parts,

• ergonomics in terms of wearing simplicity and comfort
(e.g., as a part of clothes, belt, watch, etc.),

• data redundancy, constrained by the system transmition,
storage and processing abilities.
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Fig. 1. Inertial sensor orientation (a) and locations during experiments (b)

To do so, we investigate acceleration and velocity informa-
tion from inertial sensors in terms of their real-time trajectory
plots, employing a step detection and description algorithm.
We also propose distinctive features in order to indicate
specific motion properties.

II. MATERIALS AND METHODS

A. Input Data

Since in this study we focus on a human walk monitoring,
we use only inertial sensors as input data sources. Fig. 1a
shows the space orientation, that has been defined for each
sensor with respect to the patient. We have tested various
sensor locations (Fig. 1b): back (at T6 vertebra), hips and
ankles. Correlation analysis for the MDAD with five sensors
placed on the patient’s back has been discussed in the
previous work [9].

With sampling frequency fs set to 100Hz, each sensor
produces two 3-element samples:

• acceleration a(t) = [ax(t), ay(t), az(t)]
T normalized

with respect to the gravitational acceleration g,
• angular velocity ω(t) = [ωx(t), ωy(t), ωz(t)]

T in radi-
ans per second.

B. Data Preprocessing

Multiple procedures have been tested and appended into
the acceleration signal preprocessing workflow. That includes
both, low-pass (median with window size at 15) and high-
pass filtering (elliptic IIR with cutoff frequency at 0.2Hz),
in order to eliminate high frequency noise and directional
acceleration offset, respectively. We have also employed an
algorithm for the offset detection and subtraction to avoid
nonlinear phase distortions brought by the IIR filter in a ca.-
1Hz range. Note, that both high-pass filters successfully
remove g (gravity of Earth) from the ay component. The
gyroscope data have been employed by the quaternion-
based algorithm [10], [11] for the virtual sensor rotation
to the default position, applied to predict and remove the
gravitational acceleration influence on each of the sensor
axis.
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Fig. 2. Acceleration Cartesian vs. spherical coordinate system

Based on the offset-free acceleration vector, a complete
set of samples is computed in time t:

• acceleration vector in spherical coordinate system
a(t) = [aρ(t), aθ(t), aφ(t)]

T (Fig. 2), where:

aρ(t) =
√

ax(t)2 + ay(t)2 + az(t)2, (1)

aθ(t) = arctan

(

ay
√

ax(t)2 + az(t)2

)

, (2)

aφ(t) = arctan

(

ax

az

)

, (3)

• velocity v(t) = [vx(t), vy(t), vz(t)]
T :

v(t) =
∫ t

0

a(τ)dτ. (4)

C. Step Detection

Reliable step detection is the first stage of the walk features
extraction. Since the vertical acceleration indicates mostly
the gait peaks, the ay component is employed to detect the
steps. Several constraints have been formulated to reject false
positive detections:

• peak shape conditions in terms of a minimum margin
of protrusion over surrounding minima and its width in
time domain,

• peak-to-peak interval time limits.

All quantitative limitations, initially set to standard values
averaged through a large population, are adapted individually
during the learning phase.

D. Cartesian and Spherical Step-Gated Trajectories

Patient’s walk might be described by a standard step
trajectory, acquired during a learning period. All short- and
long-term variations are supposed to serve as primary alert
sources.

A single step trajectory is determined by a linear interpo-
lation of the acceleration component ac (with c = {x, y, z}
or c = {ρ, θ, φ} in Cartesian and spherical coordinate
system, respectively), gated by the current step timestamps.
Interpolation secures an equal length of all steps’ trajectories,
which is necessary to enable a comprehensive inter-step
analysis. According to the sampling frequency, average step
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Fig. 3. Step acceleration trajectories for different gait types (single patient each, averaged throughout a 60s period): normal walk (red), left leg limp (blue),
right leg limp (green). Left to right: ax, ay , az coordinates as a function of a sample number n (a)-(c), respectively, and a 3D plot of a(n) (d). A single
plot covers two steps (left and right), stars indicate the step beginning. The sensor is located on patient’s back (T6 vertebra).

duration and required accuracy level, the number of points
per step has been set to Npps = 50.

Valuable observations can be done on trajectory plots.
Fig. 3 shows sample averaged trajectories of a walk observa-
tion for three different types of gait: normal walk, left- and
right leg limp. Since the peak detection algorithm (Section II-
C) produces subject-invariant reference time sequence of
each step, the procedure might be employed to draw velocity
trajectories as well.

E. Secondary Features

The step-gated trajectories are subjected to the features
extraction phase. In this study two types of features are
introduced. The first one is related to the step description,
the other reflects the trajectory shape.

The step description features result from the 2D trajec-
tories yielding the step duration, left-to-right step duration
ratio, the foot deviation from the waking direction, the full
cycle (double) step frequency and a comprehensive step
analysis in frequency domain — using the Discrete Fourier
Transform (DFT) [12], etc.

The 3D trajectory shape (Fig. 3d) is reflected by the
ellipsoid with the same second-order moments as the set of
trajectory points in Cartesian coordinate system [13]. Thus,
the ellipsoid center, area, major and minor axes lengths
with their ratio, the major axis direction, eccentricity are
extracted. Fig. 4 shows projections of the ellipsoid onto
each of the three planes x-z, x-y and z-y for trajectories
from Fig. 3. The ellipsoid-based analysis is also useful in
a continuous analysis, i.e. setting a fixed, few-second time
window provides a sufficient amount of samples to cover few
steps or inactivity moment and deliver necessary data to the
inference system.

III. EXPERIMENTAL RESULTS

A. Evaluation of Step Detection

The step detection algorithm has been evaluated using
a database of 70 various gait signals obtained during exper-
iments involving 8 patients. Detection has been performed
with reference signals taken from different body locations.
Table I presents the sensitivity results yielded for three gait
modes: normal walk, left and right limp, whilst Table II

TABLE I

STEP DETECTION SENSITIVITY

Sensor location Normal walk Left leg limp Right leg limp

Back (T6) 99.30% 99.87% 99.61%
Left hip 89.55% 87.10% 94.59%

Right hip 87.89% 86.29% 97.30%
Left ankle 98.10% 85.48% 99.23%

Right ankle 99.05% 97.58% 72.97%

TABLE II

STEP SIDE ASSIGNMENT SENSITIVITY

Sensor location Normal walk Left leg limp Right leg limp

Back (T6) 99.69% 100.00% 100.00%
Left hip 78.78% 96.76% 91.02%

Right hip 76.76% 70.56% 98.41%
Left ankle 100.00% 99.06% 100.00%

Right ankle 98.56% 100.00% 92.06%

shows the step side assignment summary (both experiments
averaged across different subjects). The back is the most reli-
able location, with high efficiency in both tasks. Although the
ankle locations produce the largest acceleration peaks, their
asymmetry makes the leg-dependent observations difficult.
Furthermore, any pathological changes of the limbs shortens
the acceleration peaks. Thus, the back location proves to be
the most promising in step detection during various modes of
shuffling, yet due to a small amplitude of the ay component,
the employment of ax is inevitable.

B. Incident Detection Using Ellipsoid-Based Features

An ellipsoid described in Section II-E has been employed
to indicate unusual patterns in gait signal. Two particular
incidents have been extracted from the standard walk course:
sudden leans against the wall and slips. Fig. 5 shows plots
of ellipses areas (ellipsoid projection onto Cartesian planes)
during the disturbed gait periods (arrows indicate the in-
cidents). The ellipses’ areas detect sudden accelerations in
given directions, whilst the other features distinguish steps
and incidents.
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Fig. 4. Ellipsoid projections of trajectories form Fig. 3 onto three
basic Cartesian planes: normal walk (red), left leg limp (blue), right leg
limp (green). Left column refers to left step, right column — to right step.
Stars indicate the step beginning, samples are shown as points.

IV. CONCLUSIONS

The procedures, features and conclusions presented in
this paper stand for the first phase ot the study on an
intelligent remote AAL system for the elderly care in home
environment. Since the capabilities of motion observation
prove to offer comprehensive information about patient’s
activity, we currently look forward to the employment of
a knowledge-based and adaptable expert systems for model
creation and automated supervision with reliable reports on
patient’s conditions.
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