
  

 

Abstract— Decoding brain activity of corresponding high-

level tasks may lead to an independent and intuitively controlled 

Brain-Computer Interface (BCI). Most of today’s BCI research 

focuses on analyzing the electroencephalogram (EEG) which 

provides only limited spatial and temporal resolution. Derived 

electrocorticographic (ECoG) signals allow the investigation of 

spatially highly focused task-related activation within the high-

gamma frequency band, making the discrimination of 

individual finger movements or complex grasping tasks 

possible. Common spatial patterns (CSP) are commonly used 

for BCI systems and provide a powerful tool for feature 

optimization and dimensionality reduction. This work focused 

on the discrimination of (i) three complex hand movements, as 

well as (ii) hand movement and idle state. Two subjects S1 and 

S2 performed single ‘open’, ‘peace’ and ‘fist’ hand poses in 

multiple trials. Signals in the high-gamma frequency range 

between 100 and 500 Hz were spatially filtered based on a CSP 

algorithm for (i) and (ii). Additionally, a manual feature 

selection approach was tested for (i). A multi-class linear 

discriminant analysis (LDA) showed for (i) an error rate of 

13.89 % / 7.22 % and 18.42 % / 1.17 % for S1 and S2 using 

manually / CSP selected features, where for (ii) a two class LDA 

lead to a classification error of 13.39 % and 2.33 % for S1 and 

S2, respectively. 

I. INTRODUCTION 

A Brain-Computer Interface (BCI) provides an 
alternative way for interaction that bypasses the brain’s 
normal output pathways of peripheral nerves [1]. A BCI can 
be realized following different strategies and most of them 
rely on processed electroencephalographic (EEG) data 
containing event-related potentials (ERP) or oscillations 
showing event-related desynchronization/synchronization 
(ERD/ERS) [1], [2]. The EEG is widely spread because of 
its low cost and easy setup, as well as its very high temporal 
resolution [3]. However, the weak spatial resolution is 
limiting many EEG based BCI applications in combination 
with a low signal-to-noise ratio. 

Changing to invasive EEG recording techniques like 
electrocorticography (ECoG) can overcome these limitations 
[4]. While non-invasive EEG signals have carry information 
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in the range of 0 – 40 Hz, ECoG signals provide information 
up to 500 Hz [5]. This broader bandwidth covers the 
movement related increase in bandpower for frequencies 
above 40 Hz, which is called high-gamma activation (HGA) 
[6]. Such a task related HGA is highly focused at specific 
cortical regions. 

As the small exposure diameter and the dense alignment 
of ECoG electrodes lead to a much higher spatial resolution 
than in EEG, the ECoG signals allow mapping of functional 
brain regions more precisely. Even individual finger 
movements can be detected from ECoG signals [7]. Recent 
studies also decoded hand movement trajectories [8] and 
developed ECoG BCI applications based on motor imagery 
[9]. 

In order to provide a more intuitive way to interact with 
the environment, it is required to analyze more complex 
tasks than isolated hand or finger movement. To optimize the 
movement behavior of neuroprosthetic devices two different 
grasping tasks were distinguished [10]. While changes in low 
frequencies are very similar over large cortical regions for 
slightly different tasks, the highest decoding accuracies were 
achieved with frequencies above 50 Hz. Such high-level 
tasks might be very useful for more complex intention 
recognition, as this seems to be the way we usually interact 
with our environment. 

In this work we are attaching to the idea of identifying 
high-level tasks. Common spatial patterns (CSPs) have so far 
mainly been utilized on the alpha and beta frequency bands 
for motor imagery tasks [12], [13], [16]. For motor execution 
it was shown that the HGA spectrum displays most of the 
movement related brain activity [14]. Therefore a novel four-
class model for three different hand poses and the resting 
condition ‘idle’ has been developed using CSP features on 
high gamma activity of human ECoG data. The aim of the 
study is to determine whether it is possible to discriminate 
three different hand poses and the idle state with single trial 
analysis, and to compare the results to a manual selection of 
optimal channels and frequency bands. 

II. METHODS 

A. Subjects 

Two patients who underwent neuro-monitoring for 
surgical treatment of intractable epilepsy volunteered for 
participation in the experiment. The first patient (S1) in the 
Asahikawa Medical University as well as the second patient 
(S2) in the University of Tokyo had subdural electrodes 
(Unique Medical, Tokyo, Japan) implanted to localize the 
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Figure 2.  Arrangement of ‘movement’ trials (green) and left-shifted ‘idle’ trials (red) in context with the ECoC and EMG data. Due to irregular 

inter-trial intervals and triggering 0.5 s before trial onset the ‘idle’ trials are often contaminated with ongoing movement from the previous 

‘movement’ trial as can be seen by comparing with the EMG amplitude. 

epileptogenic zones. The used platinum electrodes had an 
inter-electrode distance of 1.0 cm and an exposure diameter 
of 2.3 mm. Table 1 and Fig. 1 show more details about the 
subjects.  

 

Figure 1.   Electrode configuration of subject S1 with coverage of the 

lateral side of the right hemisphere (left) and subject S2 with coverage of 

the left frontoparietal and the interhemispheric cortex (right). 

TABLE I.  SUBJECT DETAILS 

Subject Gender Age 
Dominant 

Hemisphere 

Number of 

Electrodes 

S1 female 35 right 98 

S2 male 22 left 60 

 

B. Experimental Design 

The subjects were asked to remain silent and follow the 
instructions presented on a screen that was placed bedside to 
the patient. For stimulus presentation the 
MATLAB/Simulink rapid prototyping environment was 
used. The paradigm comprised of the tasks (i) make a fist, 
(ii) show the peace gesture (V-sign) and (iii) open the hand. 
Due to limited experimental time the subjects had to perform 
slightly different paradigms, both with a varying inter-trial 
length to prevent subject adaptation. While S1 performed 90 
trials in total, each consisting of a 1.5 s (± 10 %) baseline 
and a 1.5 s active period, subject S2 performed 120 trials 
with 2 s (± 25 %) baseline and 2 s active period. During 
every single trial exactly one hand pose was performed. The 
number of trials for each hand pose was equally distributed. 

C. Data Acquisition 

The ECoG data was recorded at bedside using a g.HIamp 
biosignal amplifier (g.tec medical engineering GmbH, 
Schiedlberg, Austria) with a sampling rate of 1200 Hz and its 
built-in band-pass filter set to the range from 0.5 to 500 Hz. 
For subject S2 the hand movement onset was determined via 
electromyogram (EMG) on the right hand and stored as 
additional channel in the same recording.  

D. Pre-processing 

The data from both subjects was band-pass filtered from 
100 to 500 Hz (high gamma range) with additional notch 
filters at all harmonics hi of the 50 Hz power line frequency. 
All filters were designed as Butterworth filter of order 5 with 
a notch width of hi ± 5 Hz. Then the data was triggered 
500 ms before and 1500 ms after the stimulus onset of each 
task which results in an overall trial length of 2 s. 

E. CSP Feature Extraction and Classification 

Common Spatial Patterns (CSPs) are a standard method 
for EEG data to extract optimal discriminant features in 
movement (or movement imagination) tasks. In this paper a 
two-stage process is described where in a first step 
movement is told apart from the idle state and in a second 
step the three different hand poses are decoded in a ‘one vs. 
all’ comparison [15]. Since the experimental paradigm did 
not contain a separate class of idle trials, such a set was 
created offline by looping the data sets once and shifting the 
trigger channel in the second part so that the new trial 
periods cover the inter-trial periods of the original data (see 
Fig. 2). In the case of subject S2 a left-shift of 2 s moves the 
end of the idle trials to the onset of the original trials. For 
subject S1 this is achieved by a left-shift of 1.5 s. 

To prevent influence of visual or auditory stimuli onto 
the classification, the CSPs were run exclusively on the 
electrode grids covering the motor cortex. These are the 
channels 53 – 72 on grid RP20 for S1 and the channels 1 – 
40 on grid LF40 for S2 (see Fig. 1). Error rate based search 
algorithms yielded the optimal parameters listed in table 2 
for both data sets S1 and S2. 

The CSP weight matrix calculated with the optimal 
window size was then used to spatially filter the ECoG 
signal, and the four most discriminant feature channels were 
selected per decision pair (two largest eigenvalues from each 
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side of the spectrum). Then the signal variances were 
computed and the resulting channels were normalized and 
had their logarithm taken for numeric stability. 

Based on those features a two-class linear discriminant 
analysis (LDA) for the case ‘movement’ vs. ‘idle’, or a 
multi-class LDA (MLDA) for the hand pose decryption was 
calculated using 10×10 fold cross-validation [11]. This was 
done for equally spaced time points (1/16 of sampling 
frequency) in the range of 0.5 s before and 1.5 s after 
stimulus onset, yielding a set of 32 different classifiers. 

TABLE II.  OPTIMAL SIGNAL BUFFER LENGTH 

Discriminated States 
CSP Window 

in Trial 

Signal Variance 

Window Length 

Movement vs. Idle 500 – 1500 ms 500 ms 

Fist vs. Peace vs. Open 1000 – 1500 ms 500 ms 

 

F. Manual Feature Extraction and Classification 

The ERD/ERS was computed based on a 300 ms 
reference interval before the stimulus onset. Visual 
inspection of the time-frequency plots (0 – 200 Hz) showed 
that the channels 64, 65, 69, 70 and 71 were coding the 
individual hand poses for S1, while the channels 28, 35, 37 
and 38 were doing the same for S2. Channels with strong 
task-related high-gamma activation (>60Hz) were considered 
for feature extraction. 

For each of the selected channels the signal power within 
the 60 – 90 Hz, 110 – 140 Hz and 160 – 190 Hz bands was 
estimated using a Butterworth filter of fourth order, followed 
by squaring and averaging over consecutive samples of a 
500 ms window. All feature values were then logarithmically 
scaled. Based on the given bandpower features, a multi-class 
linear discriminant analysis (MLDA) was performed to 
compute a set of 32 linear classifiers, each represented the 
features for a given time point [11]. As in the CSP case, a 
10×10 cross-validation was used to determine the classifier 
error rate. 

To determine the significance level of distinct 
distribution means between the two feature extraction 
methods, the nonparametric McNemar’s test for paired 
nominal data was used with three different test statistics: 
exact binomial confidence intervals, Yates continuity 
correction, and Edwards continuity correction. 

III. RESULTS 

A. Discrimination of Hand Poses 

Using the manual feature selection, the subjects S1 and 
S2 showed a minimal detection error for the three different 
hand poses of 13.89 % and 18.42 %, respectively. In 
contrast, the CSP based features led to a minimal 
classification error of ‘fist’, ‘peace’, and ‘open’ hand poses 
of 7.22 % and 1.17 % for S1 and S2, respectively. 

Fig. 3 shows more details about the error rate of all the 
32 different classifiers in the 2 s trial window for both 

subjects and methods. The shaded areas in Fig. 3 represent 
the 95 % (dark gray) respectively the 99 % (light gray) 
significance level for the McNemar test in all three test 
statistics. 

 

Figure 3.  Averaged 3-class detection error for a single trial using 

manual (dashed lines) and CSP (contionuous lines) feature extraction. The 

vertical line represents the timepoint of the visual stimulus that showed the 

subject which hand pose to perform. The gray bars represent the areas of 

significant differences between the two feature extraction method means; 

dark gray indicates p < 0.05 and light gray p < 0.01. 

B. Discrimination of Movement and Idle State 

The discrimination of movement containing ‘fist’, 
‘peace’, and ‘open’ hand trials against the relaxed ‘idle’ state 
showed a classification error of 13.39 % and 2.33 % for S1 
and S2, respectively (see Fig. 4).  

 

Figure 4.  Averaged 2-class (‘movement’ vs. ‘idle’) detection error for 

a single trial using the CSP feature extraction. The vertical trial onset line is 

identical with the onset of the green ‘movement’ and red ‘idle’ blocks in 

Fig. 2. The non-random classification behavior before 0.4 respectively 

0.65 s stems from previous movements contaminating the fake ‘idle’ trials. 
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IV. DISCUSSION 

Fig. 3 shows the error rates of the linear 3-class 
classifiers along the different time points of trial duration. It 
can be seen that the CSP based feature extraction expresses 
significantly lower error rates in detecting the correct hand 
poses compared to the manual feature selection. The error 
rates drop from 13.89 % to 7.22 % for S1 and from 18.42 % 
to 1.17 % for S2. This yields a maximal mean accuracy rate 
of 95.8 % by gaining on average 11.96 %.  

Due to the 500 ms signal buffer for the bandpower 
computation and the reaction time of the subject, the 
movement type features were most discriminant in a window 
between 800 and 1200 ms after trial onset (300 – 500 ms 
after cue presentation). Furthermore, the features only 
remained stable for around 300 ms, which leads to long 
phases of random state classification in an online 
experiment. 

Therefore additional discrimination between the 
‘movement’ and ‘idle’ state was used to minimize these false 
positive assignments. Fig. 4 shows that the respective error 
rates drop with the beginning of the movement around 500 to 
800 ms after the trial onset. The bowl-shaped deviation from 
the 50 % chance level for the classification error in the 
window from -0.5 to 0.65 s (S1) and -0.5 to 0.4 s (S2) stems 
from contamination with the end of the movement period of 
the previous trial. This is a direct consequence of the 
generation of the ‘idle’ trials via trigger shifting (see section 
II E). The contaminated window for S2 is shorter because of 
the longer inter-trial period compared to S1. Visual 
inspection of the video material of the hand movements 
during the experiments reveals a possible reason for the 
weaker movement/idle discrimination of S1: it can clearly be 
seen that the flexion and extension of the fingers was 
executed much more powerful by subject S2. 

The presented experiments further show a strategy how 
to detect specific hand movements in an online environment. 
The presented two-step BCI system allows the detection of 
movement in the first place, followed by a movement 
discrimination step. These two steps are computed in parallel 
(using their distinct CSP filters and classifiers). If 
‘movement’ is classified the classification output of the 3-
class hand pose is emitted, otherwise the state ‘idle’ is 
shown. Compared to the manual feature extraction the CSP 
filtering process stands out by the higher classification 
accuracy and the inherent dimensionality reduction, which 
decreases the computational effort tremendously and is an 
important factor for real-time computation within an online 
BCI system. In contrast to CSP based classification 
algorithms for EEG data (e.g. [17]), it stands out that similar 
accuracies can be achieved for more classes, shorter trial 
periods, and without the need of extra subject training. 

In conclusion, the presented ECoG based BCI system 
provides an accurate and fast configuration for a 
corresponding online setup. 
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