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Abstract— Sleep is a key requirement for an individual’s
health, though currently the options to study sleep rely largely
on manual visual classification methods. In this paper we
propose a new scheme for automated offline classification
based upon cross-frequency-coupling (CFC) and compare it to
the traditional band power estimation and the more recent
preferential frequency band information estimation. All three
approaches allowed sleep stage classification and provided
whole-night visualization of sleep stages. Surprisingly, the
simple average power in band classification achieved better
overall performance than either the preferential frequency
band information estimation or the CFC approach. However,
combined classification with both average power and CFC
features showed improved classification over either approach
used singly.

I. INTRODUCTION

During a single night, a healthy individual transitions
through multiple stages of sleep that can be classified as
either rapid eye movement (REM) or non-rapid eye move-
ment (NREM) sleep. REM sleep makes up approximately
20-25% of nightly sleep in adults, occurs in cycles of
generally increasing length, and is characterized by rapid
and random eye movement. NREM sleep can be divided
into 3 or 4 stages, labeled as Stage 1 through Stage 3 or
4, with increasing numbers indicating deeper levels of sleep.
It is well known that deep sleep (stages 3 or 4) and rapid
eye movement (REM) sleep are important for brain health.
Recently, new studies have underscored the importance of
adequate amounts of certain sleep stages by identifying
specific processes occurring during sleep that contribute to
learning and memory [1], accelerate clearance of toxins [2],
and promote healthy brain structure and function.

Electrophysiologically instrumented studies are commonly
used to measure the stages and quality of sleep for diagnosis
and treatment of sleep-related disorders. Typically the data
from these studies are evaluated visually; however, some
approaches for automatic sleep stage classification have been
developed. Wavelet methods have been used in some studies
to characterize sleep stages [3], [4]. In this study, we tested
two standard methods along with a new method for clas-
sifying sleep stages that extends continuous wavelet trans-
form (CWT) methods by evaluating CWT cross-frequency-
coupling (CFC). Testing was performed using the “ST”
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(Sleep Telemetry) files from a 1994 study of temazepam
effects on sleep available in the Sleep-EDF Database on the
Physionet.org website [5].

II. METHODS

The Physionet Sleep-EDF Database “ST” files contain
recordings from 22 individuals (males and females) who had
some difficulty falling asleep but were otherwise healthy.
Data was collected during an overnight hospital visit using
a miniature telemetry system described in [6]. The files
analyzed in this paper were from the placebo nights when
no temazepam was administered. The recordings analyzed
were taken from the Fpz-Cz EEG electrodes. Sleep stages
1 through 4, REM sleep, and wakefulness were scored
according to the hypnogram method described in [7]. For the
analysis in this paper, sleep stages 3 and 4 were combined
into one category (slow wave sleep (SWS) / deep sleep)
to reflect the newer guidelines suggested by the American
Academy of Sleep Medicine (AASM) [8]. In order to allow
preliminary comparisons of multiple sleep stage classifica-
tion approaches at different time scales, data from ten sleep
study patients were selected at random from the database. A
description of the data parameters for each subject is shown
in Table I.

TABLE I
SLEEP SUBJECT DATA DESCRIPTIONS

Patient Length epochs Awake Stage 1 2 3/4 REM

ST7061 8.28 hr 994 36 89 589 10 270
ST7082 7.70 hr 924 148 170 450 45 111
ST7101 8.69 hr 1043 126 72 303 179 231
ST7112 8.18 hr 981 45 36 388 64 293
ST7121 8.58 hr 1030 65 34 452 120 267
ST7162 8.18 hr 982 153 102 429 128 80
ST7192 7.71 hr 925 16 21 545 59 231
ST7201 7.63 hr 916 14 65 609 66 134
ST7221 8.53 hr 1023 141 211 438 2 231
ST7241 8.43 hr 1012 20 38 670 38 236

The classification performance of three sets of features
extracted from the data for all 10 patients were compared in
order to determine the whether the CFC features offered any
advantages over current methods.

A. Average spectral power method

The first set of features were based on the common power
spectrum bands. The data was segmented into 1 second
frames without overlap over which the power within each
of the Delta (3-4 Hz), Theta (4-8 Hz), Alpha (8-13 Hz),
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Low Beta (13-16 Hz), High Beta (16-30 Hz), and Gamma
(30-58 Hz) frequency bands were recorded. The filters were
implemented using short-time Fourier transforms (STFTs)
followed by Hamming window smoothing. For each of these
bands the features were normalized to unit variance and
zero mean. For visualization, these features were averaged
over many frames to generate a coarse resolution version.
The graphs shown in Fig. 1 use a 150 second window. For
classification, a 30 second epoch window was used.

Fig. 1. Two minute average spectral power features for ST7241. The dots
at bottom indicate the expert identified sleep state: waking (lowest y-axis
value), and sleep stages (REM and stages 1-4) respectively shown with
increasing y-axis value.

B. Preferential frequency band method

The second set of features were created as an adaptation
of [9] using maximal frequency indicies within STFT time
frames (Fig. 2). This proved insufficient for classification on
the given data, so the procedure was modified as follows.

Let X be the STFT of the signal with no overlap and
five second frames. Next, normalize the z-score of every
frequency bin across the patient’s entire recording. Let
Yi,j < −1 if argmaxjXj,i∀i and 0 otherwise. Lastly, blur
Y columnwise s.t. the energy placed in one frequency bin is
spread to adjacent ones.

To obtain better frequency estimates, additional blurring
can be done through time along each row as seen below
[9]. This however was not done on the features used for
classification to avoid any over optimistic results through
nearest neighbor cases.

C. Cross-frequency-coupling method

For this method, the EEG data was z-scored for each
epoch. Next, the continuous wavelet transform with a com-
plex Morlet mother wavelet was used to extract phase and
amplitude features corresponding to 6 frequency sub-bands
from each 30 second epoch. The frequency bands used were
the same as used in the average spectral power method.
For each epoch, Phase-amplitude cross frequency coupling
(CFC) features were calculated as described in [10] for
each possible phase, amplitude sub-band combination (36
total). The length-36 column feature vectors for the epochs
were then concatenated in an array and the rows of the

Fig. 2. Preferential frequency band features versus epoch for ST7241. On
the y-axis, the letters refer to the approximate region of the Delta (A), Theta
(B), Alpha (C), Low beta (D), High beta (E), and Gamma (F) frequency
bands. The black dots at bottom indicate the expert identified sleep state:
waking (lowest y-axis value), REM sleep, sleep stages 1-4 (shown with
respectively increasing y-axis value).

array were z-scored in order to avoid variations in feature
strength between rows due to differences in the sub-band
powers. Variations between different rows occur due to
power differences in the frequency bands.

Fig. 3 columns correspond to the CFC features for each
recording epoch in chronological order. Colors represent the
z-scored degree of phase-amplitude CFC in each of the
amplitude sub-bands shown on the y-axis. The 6 rows in
each amplitude sub-band group indicate the degree of CFC
between the amplitude in the frequency band shown on the
y-axis and the phase for each of the 6 sub-bands (listed in
the same order as the amplitude sub-bands).

Fig. 3. Phase-Amplitude Coupling features versus 30 second epoch for
ST7241. The black stair-step line at bottom indicates the expert identified
stages: movement, REM, stages 4,3,2,1, and waking (from bottom to top
stair-steps, respectively).

Each column in the image represents a 30 second time
interval (epoch). Several regions of reduced (blue) or en-
hanced (red) modulation activity can be seen. In particular,
blue patches in the low beta band are visible during REM
sleep (broad low steps on black ”stair-step” line).
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D. Classification

Each of the 10 files analyzed in this study contained
approximately 8 hours of sleep. Sleep scoring annotations
(hypnograms) were available for each file. Annotations in-
dicated one of the following for each 30 second epoch in
the file: Movement, Waking, Rapid Eye Movement (REM)
sleep, and non-REM sleep stages 1-4. The single stream of
EEG data from the Fpz-Cz electrodes were used to perform
the classification analysis.

The three types of features described previously in the
methods were extracted from the EEG data. The corre-
sponding labels from the annotation files were then used
to enable Linear Discriminant Analysis (LDA) classification
with 5-fold cross-validation. To test the performance of the
three feature sets, each individual dataset was used as a
test set based on training data from the other 9 individual
datasets. These performance scores are shown as icons in
Fig. 4. In addition to the simple LDA approach, a bootstrap
aggregating (bagging) algorithm was used to improve the
classification accuracy, and to test whether combining two
of the feature sets might improve overall classification per-
formance (Fig. 5). The bagging classifier used ensembles of
decision trees with up to 200 trees.

E. ANOVA multiple comparison analysis

Multiple comparison analysis using pairwise ANOVA with
Bonferroni correction was used to evaluate whether any
individual features showed statistically significant differences
in the sleep stage data populations. The resulting plots
in Fig. 6, 7, and 8, show the mean values of the most
statistically significant features for the four sleep stages
considered (small filled circles). Lines indicate statistical
significance boundaries. None of the lines in the three figures
overlap, indicating these features have statistically significant
differences for each sleep stage.

III. RESULTS

Surprisingly, the simple average band power features
(shown in red in Fig. 4) allowed better mean overall per-
formance than did the preferential frequency region features
(green) and the CFC features (blue). However, the perfor-
mance rate varied more for different individuals with these
features than with the other two feature types.

All methods performed better on average for stage 2 sleep,
likely because of the large number of datapoints for stage 2
as seen in Table I. Stage 1 sleep was the least well classified.
This may have been due to the fact that Stage 1 sleep is
more transient in nature as can be see by the fluctuations
near the beginning of the sleep label indicators underneath
the example feature images in Fig. 2 and 3.

In general, no individual features allowed enough sepa-
ration of the data for classification. However, for each of
the three feature sets, multiple comparison analysis with
Bonferroni correction was used to determine if any fea-
tures showed statistically significant difference in the sleep
stage data populations. The feature or group of features
that showed the most statistically significant difference in

Fig. 4. Classification of 4 sleep stages (waking, Stage 1, Stage 2, Stage
3/4, and REM) using 3 different feature selection methods: average spectral
power (red), peak powers (green), and cross-frequency-coupling (blue). Each
dot represents the classification rate for one individual for the class indicated
on the x-axis. For this figure, each individual was tested based on classifiers
trained on the other 9 individuals.

Fig. 5. Overall classification performance for 4 sleep stages using bagged
classification with average spectral power (blue), cross-frequency-coupling
(red), and combined features (green).

the data populations for each stage occurred in different
frequency regions as shown in Fig. 6, 7, and 8 for the average
band power, preferential frequency band, and CFC feature
selection methods. For the average band power, the most
statistically significant feature was the alpha band power. For
the preferential frequency band, the feature grouping with the
most statistical significance was the high beta band, while for
the CFC approach, the most statistical significance was found
in the low beta amplitude features. Note that the proximity
of the lines denoting statistical significance indicate that for
the three features, the CFC feature differences are more
statistically significant, while the average power method
feature differences are the least statistically significant.

Since the most statistically significant features differed
for the three methods, the performance of the combined
average power and CFC MI features was compared to the
overall performance for each feature set used separately. The
bagging classification results, calculated with 5-fold cross-
validation, show that the combined average power and CFC
MI features performed better than either feature set on its
own (Fig. 5). The preferential frequency band feature set
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was not included in the combined testing due to it’s large
size (250 features).

Fig. 6. Multiple ANOVA comparisons showing statistically significant
differences between sleep stages in alpha band for average power features.

Fig. 7. Multiple ANOVA comparisons showing statistically significant
differences between sleep stages in high beta band for preferential frequency
band features.

Fig. 8. Multiple ANOVA comparisons showing statistically significant
differences between sleep stages in low beta band for CFC features.

IV. DISCUSSION
Although the best sleep classification performance shown

in the results reached only 75% accuracy, it is important to
note that the ground truth hypnogram sleep scores generated
by expert sleep scorers can vary a great deal. For example, in
one recent study [11], the interrater agreement for the R&K
standard sleep-scored data was reported to be 80.6%.

Interestingly, the frequency bands yielding the most statis-
tically significant differences between features for the 4 sleep
states were unique for each of the three feature sets, suggest-
ing that the information contained in each feature set may
not be simply related to underlying average power changes,
but may be conveying different information about the EEG
signal for the sleep stages. The improved performance of the

bagged classifier test with the combined average power and
CFC MI features supports this hypothesis.

Since the CFC methods described in this study were
previously shown to allow assessment of parkinsonism sever-
ity in epidural EEGs in non-human primates [10], it may
be possible to apply the methods as a tool for gaining
understanding about neural changes in individuals who suffer
from a combination of sleep disorders and parkinsonism.

V. CONCLUSIONS

Sleep stages were classified at greater than chance levels
using each of the three feature selection methods tested in
this study. Combining average power and cross-frequency-
coupling features in a bagging classifier with ensembles of
decision trees yielded 75% accurate classification. However,
based on a qualitative review of the sleep study hypnogram
annotations compared to our automated scoring, manual
visual sleep staging appeared to provide better annotations.
Thus, the best use of the feature sets analyzed here may be
to assist the sleep scoring expert, by allowing quantitative
frequency band analysis, and visualization of the entire
night’s sleep in a single image.
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