
Brain Source Localization in the Presence of Leadfield Perturbations 
 

Rabiya Momin, Student Member, IEEE, Hasan S. Mir, Senior Member, IEEE and  
Hasan Al-Nashash, Senior Member, IEEE

 
 

Abstract— This paper studies the performance of the 

recently developed G-MUSIC algorithm as applied to the 

problem of brain source localization. G-MUSIC is a form of 

weighted MUSIC that performs better in scenarios where only 

limited sample support is available. Two transfer function 

based calibration algorithms are also developed to estimate the 

location of neural activity in the brain accurately when the 

measured leadfield is perturbed. The localization performance 

of G-MUSIC is compared to traditional MUSIC and quantified 

in terms of the localization error. Simulations suggest that G-

MUSIC can offer significantly improved localization accuracy 

over conventional MUSIC. Index Terms—Brain source 

localization, inverse problem, G-MUSIC, calibration. 

I. INTRODUCTION  

Brain source localization focuses on localizing different 
regions that are activated in the brain during a given mental 
task. Electroencephalography (EEG) is a noninvasive 
technique that measures electric potentials due to any neural 
activity in the brain Due to its low hardware costs and high 
temporal resolution, EEG provides an alternative 
neuroimaging technique to positron emission tomography 
(PET) and functional magnetic resonance imaging (fMRI). 
Moreover, EEG offers the possibility of measuring neuronal 
activity in real time, as needed when investigating the 
temporal properties of the brain [1]. In the context of EEG, 
the bio electromagnetic inverse problem consists of 
localizing the source of signals collected in response to 
neural activity. 
Array processing methods provide a robust signal 
processing tool to solve the inverse problem. MUltiple 
SIgnal Classification (MUSIC) is a well-known subspace-
based source localization algorithm that utilizes the eigen 
structure of the spatial covariance matrix and provides a 
computationally efficient alternative to maximum likelihood 
(ML) algorithms [2]. Improved localization accuracy is 
afforded through the use of more electrodes; this in turn 
requires more time samples in order to obtain an accurate 
estimate of the data covariance matrix. However, enough 
time samples may not be available or usable due to the 
nonstationarity property of the signal. Nonstationarity could 
arise due to different time scales involved in the dynamical 
process, which for EEG waves is on the order of 0.1 seconds 
whereas that of an action potential is about 1millisecond [3]. 
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In cases where only a limited number of samples are 
available, the performance of the MUSIC algorithm 
degrades since part of the energy from the noise subspace of 
the covariance matrix leaks into the signal subspace, causing 
the two subspaces to lose their orthogonality. In order to 
counter this problem, a new source localization technique 
called G-MUSIC is proposed in [4] which is a form of 
weighted MUSIC. Unlike MUSIC which only uses 
eigenvectors from the noise subspace, G-MUSIC uses all 
(signal and noise) eigenvectors of the data covariance 
matrix.  
Furthermore, various anomalies can cause the measured 
lead field to differ from the theoretical lead field. These 
anomalies can arise due to e.g. co-registration and 
approximation of the head model with limited accuracy and 
discretization of the source space and are termed as 
calibration errors [5]. As such, array calibration is required 
to account for any discrepancies that may cause the actual 
lead-field to differ from the theoretical one [6]. This paper 
develops a combined calibration and localization framework 
for EEG systems operating in the limited sample regime. 
The performance of the calibration technique coupled with 
G- MUSIC is assessed and compared against the traditional 
MUSIC algorithm in terms of the source localization error. 
The rest of the paper is organized as follows. Section II 
reviews the G-MUSIC algorithm. Section III introduces the 
external and autocalibration algorithms. The simulation 
setup and quantification of results is presented in section IV, 
followed by the conclusion in section V.   

II. METHODOLOGY 

A.   Signal Model 

Consider the collection of K signals for N time samples 
obtained from an array of M sensors  
 
                                                     (1) 
 
V is an M x K normalized lead field matrix that is obtained 
from the forward problem solution, x (n) is a K x 1 source 
vector and w (n) is zero mean additive Gaussian noise at 
time n. Then, the true M x M covariance matrix of the 
observation can be represented as 
 
                         H   2  M                        (2)    
                                                                                                                                        
where, σ2

 IM  and Rxx denote the noise and the source 
correlation matrix, respectively. Furthermore, we denote the 
eigenvectors of R as {ei, i= 1…..M} and its eigenvalues as 
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 1    2     M. Assuming M   K, the smallest M - K 

eigenvalues of R correspond to the noise subspace. The 
eigen decomposition of R is represented as  

 
                                    

         
                        (3)   

                                                                                                                 
where, ES =  [e1 .. eK]    

M X K  
EN =  [eK+1 .. eM]   

M X M – K 

denote the signal and noise subspace and  S represents the 
diagonal matrix containing the eigenvalues that correspond 
to the signal subspace.The basic idea behind subspace 
identification algorithms such as MUSIC is based on the 
property that any vector present in the signal subspace is 
orthogonal to the noise subspace, i.e. EN

T vk = 0.  
In reality, however the eigenvectors are not known a-priori 
and must be estimated from the received signal. We denote 
the sample covariance matrix as   ̂ = 

  

   

 ∑          
 

 and 
its assosciated eigenvectors as { ê i, i= 1…..M} and 
eigenvalues as  1    2    M. 
The noise eigenvectors   ̂ of the sample covariance matrix 
are not exactly equal to EN; therefore   ̂ 

H
 vk should have a 

small (but non-zero) norm. The MUSIC algorithm exploits 
this principle by searching for the deepest local minima of 
the cost function              
      

       
   

   ̂   ̂ 

 
                                       (4)   

                                                                                                 
Keeping the number of sensors (M) fixed and making 
appropriate statistical assumptions where the number of 
samples (N) increases without bound (N  ), the MUSIC 
cost function is a good estimate of the deterministic original 
cost function. MUSIC is thus considered to be N- consistent; 
however the algorithm breaks down when the number of 
samples fall below a certain threshold, as shown in [4].  

B.  Mathematical Formulation of G-MUSIC [4] 

In order to localize sources when only finite sample 
support is available a new weighted MUSIC estimator is 
proposed that is both M, N consistent.  
The tools used to improve the asymptotic performance of 
MUSIC are based on G-estimation techniques that exploit 
results from random matrix theory. This method helps 
derive an M, N consistent estimator of the true covariance 
matrix for different scalar functions. Such an estimator is 
referred to as G-MUSIC. The cost function is defined as 
 
                ηG-MUSIC=   

   ( ∑      ̂  ̂ 
  

   )                       (5)                                                                         
where,     
                        

        {
       ∑

  

  -  

 
   -   

-  
  

  -  
            - 
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  -  
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   -  

  

  -  
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and               

 are the eigenvalues of diag (   
 

 

 
√  √ 
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It can be seen from (6) that G-MUSIC uses all the 
eigenvectors of the covariance matrix, whereas MUSIC only 
uses the eigenvectors corresponding to the noise subspace. 
The signal subspace is included in the G-MUSIC estimator 

since low sample support causes the noise subspace to leak 
into the signal subspace which in turn makes the two 
slightly non- orthogonal. 

III.   CALIBRATION                                                                                    
In order to relate the modeled and measured leadfield, 
transfer function based calibration algorithms are now 
developed. These algorithms require prior knowledge about 
the geometry of the modeled array manifold and the 
leadfield of the guide sources. Guide sources can be 
obtained by collecting strong focal evoked responses in the 
functionally mapped parts of the brain using applicable 
stimulation (auditory, somatosensory, visual, etc.). These 
accumulated evoked responses correspond to the 
measured/actual leadfield of the guide sources [5].  

 
1) External Calibration 

Assuming that the locations of L guide sources (L   M) 
are known, the modeled and measured leadfield are defined 
as follows: 
 

                                                 (7) 
 
                                                  (8) 
 

The calibration matrix A    MxM is then computed such that, 
Z   AV, i.e. the modeled leadfield is a good approximation 
of the measured leadfield. 
Two cost functions are defined in order to quantify the 
goodness of the approximation: 
Least Squares Criterion[5]: Define the cost function as: 

 

                              ∑     
 
           

                      (9) 
 Where, F denotes the Frobenius norm. Minimizing the 
above cost function yields: 
 

                                    (10) 

Beamsum Criterion: An alternative cost-function to least-
squares is also presented in this paper. Consider introducing 
an additional degree of freedom in (9) as:  
 

     ∑     
 
             

                  (11) 
The optimum solution for   is given by 
 

    
      

|    |
                                      (12) 

   can be viewed as the projection of the modeled leadfield 
onto the measured leadfield. The primary disadvantage of 
external calibration is that any changes in the environment 
will not be accounted for and will require the calibration to 
be repeated. 

2)  Auto Calibration:  

Contrary to external calibration, auto calibration only 
requires approximate information about the locations of the 
guide sources. This technique employs a sequential 
optimization procedure to refine the estimates of the source 
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locations and then update the calibration parameters 
according to changes in the environment. An initial estimate 
of the source locations is obtained provided that nominal 
knowledge of the calibration matrix is available.  
We define V as the modeled leadfield of estimated source 
locations and construct the calibration matrix. For least 
squares the calibration matrix is computed as 

 A   V
 

                                          (13) 
The calibration matrix for beamsum is constructed by 
alternating between computing    from (12) and A as 
follows:         

                           A   (V      [
 
 

 
])

 

                 (14) 

The initial guess for A  is provided by (13). As long as the 
error associated with the initial guess is relatively small, the 
iterative algorithms will converge to its true solutions.  
Fig.1 summarizes the iterative steps of the autocalibration 
algorithm. 
 

  
Fig.1: Flow diagram of the autocalibration process 

IV. SIMULATION RESULTS 
The forward problem solution in this paper was obtained 

using the Brainstorm software. A three- shell spherical head 
model is used and the head model computations have been 
done on the Colin27 head anatomy with resolution 1mm, 
which is an MRI volume provided by the Montreal 
Neurological Institute [8]. Next, synthetic EEG signals were 
produced for a BioSemi 64 electrode system (M=64). The 
modeled leadfield is obtained from Brainstorm and the 
perturbed measured leadfield is modeled as in [5]: 

 
                                            (15) 

where          are M x M matrices, the elements of which 
correspond to zero mean normal distributions. 
 Initially, one of the four calibration techniques is used to 
account for any differences between the measured and 
modeled lead field matrices. For calibration, 65 guide 
sources (calibration points) were selected from 3840 
possible source locations (1/12th of the entire cortex 
surface).  Then, in order to verify the localization of 2 
simulated random sources located at guide sources 

numbered 1710 and 2510 respectively (within the 
calibration region), the calibrated leadfield matrix is applied 
to either MUSIC or the G-MUSIC algorithm. 
The effect of various calibration algorithms on the 
localization of sources was verified using G-MUSIC and 
MUSIC. Fig. 2 compares the mean squared error obtained 
by averaging over 30 realizations of the external and auto 
least squares calibration techniques for MUSIC and G-
MUSIC.It can be seen that external least squares calibration 
applied to G-MUSIC has lower MSE compared to the other 
techniques as the number of samples decreases. 

 
 
Fig.2: Comparative evaluation of the MSE achieved by MUSIC and G-
MUSIC when least squares external and auto calibration techniques are 
applied. 
 
The same results are observed for beamsum calibration and 
since, beamsum and least squares calibration produce 
comparable results the plots for beamsum are not included. 
Fig.3 represents the localization error where a threshold was 
applied in order to identify the strongest peaks as the 
recovered sources. The locations of the recovered test 
sources were compared to the ideal locations (in this case 
1710 and 2510), whichever it happened to be closer to. The 
simulations were carried out for 30 time samples with 
increasing SNR. In order to avoid repetition, localization 
error for only one of the sources is presented.  Observe, that 
when external calibration is used, G-MUSIC has a lower 
localization error (measured in cm) than MUSIC.  

 
Fig.3: Least squares external calibration- comparative evaluation of the 
localization error achieved by MUSIC and G-MUSIC for source 1. 

yielding the lowest MSE. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Measured leadfield Matrix  

Initial source locations are estimated or available 

Form the modeled leadfield matrix  

Compute the calibration matrix . For least squares employ 
Equation (10) for beamsum use Equation (14) 

Apply calibration matrix =  

Estimate source locations in a localization algorithm 
(MUSIC/G-MUSIC), using updated leadfield matrix 
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Similarly, Fig.4 suggests that G-MUSIC localizes sources 
with greater accuracy than MUSIC when least squares 
autocalibration is applied, even when small perturbations 
are introduced. Since, comparison of beamsum calibrations 
produce identical results, the plots are not included. 

 
Fig.4: Least squares autocalibration-comparative evaluation of the 
localization error achieved by MUSIC and G-MUSIC for source 1.  
 
Fig.5 shows that external least squares calibration provides 
lower localization error, in the presence of large leadfield 
perturbation when compared to the auto calibration least 
squares method, especially at higher SNR.  

 
Fig.5: Comparative evaluation of the localization error achieved by least 
squares external and auto calibration for source 1. 
 
Fig. 6 compares least squares autocalibration to beamsum 
autocalibration. It can be seen that the localization error for 
beamsum is lower than that of least squares at lower SNR. 

 
Fig.6: Auto calibration- comparative evaluation of the localization error 
achieved by least squares and beamsum autocalibration for source 1. 
 
In all cases G-MUSIC outperforms MUSIC. Additionally, 
even though, in all cases external calibration outperforms 

autocalibration, it should be noted that external calibration 
assumes precise apriori knowledge of the guide source 
locations, whereas autocalibration only requires a nominal 
location estimate. Thus, autocalibration provides a more 
practical solution while still maintaining a localization 
performance similar to that achieved with external 
calibration. 

V.  CONCLUSION 
In this paper, the performance of G-MUSIC and MUSIC 

was compared in the presence of leadfield perturbations 
when limited EEG sample size is available. Transfer function 
based external and auto calibration algorithms were applied 
in order to account for the perturbations. The least squares 
calibration algorithm minimizes the distance between the 
modeled and measured leadfields, and the beamsum 
calibration algorithm adds an additional degree of freedom 
by projecting the modeled leadfield onto the measured 
leadfield. Results suggest that G-MUSIC yields lower MSE 
and localization error than least squares external and auto 
calibration techniques applied to MUSIC even when the 
applied perturbation is very small. Moreover, G-MUSIC 
coupled with external least squares is superior to its 
autocalibration counterpart. The same pattern is observed 
when comparing external and auto beamsum calibration. 
Results also illustrate that G-MUSIC with beamsum 
autocalibration provides lower localization error than least 
squares autocalibration in low SNR environments. 
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